a2 United States Patent

Tunstall-Pedoe

US009098492B2

US 9,098,492 B2
Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54)
(71)

(72)
(73)

")

@
(22)
(65)

(63)

(60)

(1)

(52)

(58)

(56)

5,197,005 A

KNOWLEDGE REPOSITORY

Applicant: Evi Technologies Limited, Cambridge
(GB)

Inventor: William Tunstall-Pedoe, Cambridge
(GB)

Assignee: Amazon Technologies, Inc., Las Vegas,
NV (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

13/896,611
May 17, 2013
Prior Publication Data
US 2013/0254182 Al Sep. 26, 2013
Related U.S. Application Data

Continuation of application No. 11/459,202, filed on
Jul. 21, 2006, now Pat. No. 8,666,928.

Provisional application No. 60/704,683, filed on Aug.
1, 2005, provisional application No. 60/781,517, filed
on Mar. 8, 2006.

Appl. No.:
Filed:

Int. Cl1.

GO6N 5/00 (2006.01)

GO6F 1728 (2006.01)

GO6F 17/30 (2006.01)

GO6F 1727 (2006.01)

U.S. CL

CPC GO6F 17/28 (2013.01); GOGF 17/2765

(2013.01); GOGF 17/30277 (2013.01); GO6F
17/30654 (2013.01); GO6N 5/00 (2013.01)
Field of Classification Search
USPC 706/45, 55; 707/603, 690, 792, 794,
707/802, 805, 811, 955, 999.102, 999.103
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

3/1993 Shwartz et al.

5,282,265 A 1/1994 Suda et al.

5,404,506 A 4/1995 Fujisawa et al.

5,412,756 A 5/1995 Bauman et al.
(Continued)

FOREIGN PATENT DOCUMENTS

FR 2865055 7/2005
WO WO 00/41090 7/2000
(Continued)
OTHER PUBLICATIONS

Singh, P. “Open Mind Common Sense: Knowledge Acquisition from
the General Public”, CooplS/DOA/ODBASE 2002, LNCS 2519, pp.
1223-1237, 2002.*

Katz, B. et al. “Natural language annotations for the Semantic Web.”
On the Move to Meaningful Internet Systems 2002: CooplS, DOA,
and ODBASE. Springer Berlin Heidelberg, 2002. 1317-1331. DOL
10.1007/3-540-36124-3__83SIG.*

Saquete, E. et al. “Splitting complex temporal questions for question
answering systems.” Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics. Association for Compu-
tational Linguistics, 2004. 7 pages.™

(Continued)

Primary Examiner — David Vincent

Assistant Examiner — Benjamin Buss

(74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
& Sampson LLP

(57) ABSTRACT

A knowledge storage system is described. A specific embodi-
ment is a computer system comprising a knowledge base of
general knowledge in structured form which can be added to
and queried by untrained users. Various embodiments include
the facility for remote computers to access the knowledge
stored in the system, natural language questions to be
answered, profile screens giving general knowledge about an
object in the system, and methods for distinguishing between
reliable and unreliable facts.

21 Claims, 44 Drawing Sheets

sos {7 1

Remote compm
_ {automtse)
308", Remots |
Gomputer 2|

%06} Remote

v ; [
" “ . E
el | Glentn V[

3“‘] User Inerface

(w b browser)
| Human-Operated Computar |
Syt (Wob Intornce)
*

ez 1

Lo

Client 3

312] Remote Computs

:

A thenticatior
Genersl ion

TmDH

Gsnsmms

Server Computer System

a0
Web Interface [~ _
Pl
g rowledge
- i

US 9,098,492 B2

Page 2
(56) References Cited 2004/0064456 Al 4/2004 TFong et al.
2004/0088158 Al 5/2004 Sheu et al.
U.S. PATENT DOCUMENTS 2004/0107088 Al 6/2004 Budzinski
2004/0117395 Al 6/2004 Gong etal.

- 2004/0122656 Al 6/2004 Abir
2;232;‘8‘25 i ?ﬁ}gg? §‘3;Ziwa etal 2004/0122661 Al 6/2004 Hawkinson et al.
5,649,190 A 7/1997 Sharif-Askary et al. 2004/0162852 Al 82004 Quetal.
5,675,819 A 10/1997 Schuetze 2004/0167875 Al 8/2004 Sneiders
5,715,468 A 2/1998 Budzinski 2004/0167909 Al 8/2004 Wakefield et al.
5778157 A 7/1998 Oatman ef al. 2004/0172237 Al 9/2004 Saldanha et al.
3704050 A S/1998 Dahlgren et al 200410220965 A1 1112004 Choetal

o et al.
2;3233332 i §§}§§§ ﬁﬂ;‘;jd etal 2004/0243568 Al 12/2004 Wangetal.
6,138,085 A 10/2000 Richardson et al. 2004/0249635 Al 12/2004 Bennelt
6,263,335 Bl 7/2001 Paik et al. 2004/0260604 Al 12/2004 Bedingfield
6,289,513 Bl 9/2001 Bentwich 2005/0021517 Al 1/2005 Marchisio et al.
6.377.044 Bl 42002 Busey ot al. 2005/0027512 Al 2/2005 Waise
6,438,533 Bl 8/2002 Spackman et al. 2005/0041692 Al 2/2005 Kallstenius
6,446,081 Bl 9/2002 Preston 2005/0043940 Al 2/2005 Elderccovvvvviiiiiiiin.
6498921 Bl 12/2002 Ho et al. 2005/0065777 Al 3/2005 Dolan et al.
6,560,590 Bl 5/2003 Shwe et al. 2005/0076037 Al 4/2005 Shen
6,578,022 Bl 6/2003 Foulger et al. %882;81?%32 ﬁi ggggg Yﬁf;ﬁeld etal.
odhunter
oo oo Bl §a003 Warthen 2005/0144000 Al 6/2005 Yamasaki et al.
2005/0149558 Al 7/2005 Zhuk
2;?82;?32 E} 1%882 Ejﬁ;‘e“ etal 2005;0171746 Al 8;2005 Thalhammer-Reyero
6,735,592 Bl 5/2004 Neumann et al. 2005/0240546 Al 10/2005 Barry
2005/0256888 Al 11/2005 McConnell
2;3?8;3@8 E} %883 X@‘ﬁ:@fﬁl, 2005/0273771 Al 12/2005 Chang et al.
6.804.637 BL* 10/2004 Tokuda et al. oo 704/ 2005/0278309 Al 12/2005 Evans et al.
6,823,325 Bl 11/2004 Davies et al. 2005/0289124 A1 12/2005 Kaiser et al.
6,910,003 Bl 6/2005 Arnold et al. 2006/0004742 Al 1/2006 Datla et al.
6.952,666 Bl 10/2005 Weise 2006/0053000 Al 3/2006 Moldovan et al.
2006/0100998 Al 5/2006 Edwards et al.
2;332;;% Eﬁ %882 Sﬁg Z: Z% 2006/0112029 Al 5/2006 Estes
7,013,308 Bl 3/2006 Tunstall-Pedoe 2006/0136375 Al 6/2006 Cox et al.
7.039.875 B2 52006 Khalfay et al. 2006/0161544 Al 7/2006 Lee et al.
7,050,977 Bl 5/2006 Bennett 2006/0167931 Al 7/2006 Bobick et al.
7,069,254 B2 6/2006 Foulger et al. 2006/0184491 Al 8/2006 GuPta et al.
7092028 Bl /2006 Elad etal. 2006/0217818 Al 9/2006 Fujiwara
7,415,044 B2 8/2008 Kallstenius 2006/0224569 A1 10/2006 DeSanto et al.
2006/0253431 Al 11/2006 Bobick et al.
;ﬁ}g:ég? E§ 1%882 (B}ir;g otal. 2007/0005566 Al 1/2007 Bobick et al.
7454430 Bl 11/2008 Komissarchik et al. 2007/0011125 Al 1/2007 Angele
7,526,425 B2 4/2009 Marchisio et al. 2007/0033221 Al 2/2007 Copperman et al.
7,536,368 B2 5/2009 Todhunter 2007/0043708 Al 2/2007 Tunstall-Pedoe
7530656 B2 5/2000 Fratkina et al. 2007/0055656 Al 3/2007 Tunstall-Pedoe

: 2007/0067293 Al 3/2007 Yu
;:;8;:%8 Eﬁ 3;3818 %ﬁjﬁ_%doe 2007/0299799 Al 12/2007 Mechan et al.
7,734,623 B2 6/2010 Witbrock et al. 2008/0109212 Al 5/2008 Wltbrock et al.
7,739,104 B2 6/2010 Berkan et al. 2008/0140387 Al 6/2008 Linker
7.752.154 B2 7/2010 Friedlander et al. 2008/0221983 Al 9/2008 Ausiannik et al.
7:844:562 B2 11/2010 Gong et al. 2008/0250347 Al 10/2008 Gray et al.
7,962,326 B2 6/2011 Tsourikov et al. 2008/0270378 Al 10/2008 Setlur et al.
7,974,714 B2 7/2011 Hoffberg 2008/0301095 Al 12/2008 Zhu etal.
8,024,177 B2 92011 Lenatetal. 2008/0301120 Al 12/2008 Zhuetal.
8,126,890 B2 2/2012 Bobick et al. 2009/0012865 Al 1/2009 Celik
8,219,599 B2 7/2012 Tunstall-Pedoe 2009/0070284 Al 3/2009 Tunstall-Pedoe
8,468,122 B2 6/2013 Tunstall-Pedoe 2009/0070322 A1 3/2009 Salvetti et al.
8,666,928 B2 3/2014 Tunstall-Pedoe 2009/0192968 Al 7/2009 Tunstall-Pedoe et al.
ggéggég g% Sggij %unS:aﬁ-gegoe 2010/0205167 Al 82010 Tunstall-Pedoe et al.
s K unstall-Pedoe

2001/0047290 Al 112001 Petras et al. ggi%f%ggﬁ 2} 1%8}? Eﬁggﬁr
2001/0053968 Al 12/2001 Galitsky et al. 2011/0307435 Al 12/2011 Overell
2002/0010714 Al 1/2002 Hetherington 5012/0036145 AL 29012 Tunstall-
2002/0059069 Al 5/2002 Hsu etal. unstall-Pedoe
2013/0041921 Al 2/2013 Cooper et al.
2002/0059157 AL 52002 Spooner et al. 2013/0253913 Al 92013 Tunstall.Pedoe
2002/0107844 Al 82002 Chaetal. -
2002/0107861 Al $/2002 Clendinning et al. 2013/0254182 Al 9/2013 Tunstall-Pedoe
2002/0116176 Al 8/2002 Tsourikov et al. 2013/0254221 Al 9/2013 Tunstall-Pedoe
2002/0147631 Al 10/2002 Smith et al. 2013/0262125 Al 10/2013 Tunstall-Pedoe
2002/0156763 Al 10/2002 Marchisio et al. 2013/0275121 Al 10/2013 Tunstall-Pedoe
2002/0198697 Al 12/2002 Datig 2014/0351281 Al 11/2014 Tunstall-Pedoe
2003/0014421 Al 1/2003 Jung
2003/0126136 Al 7/2003 Omoigui FOREIGN PATENT DOCUMENTS
2003/0130976 Al 7/2003 Au
2003/0172075 Al 9/2003 Reisman WO WO 00/57302 9/2000
2004/0019595 A1* 1/2004 Bhogaletal.ccooc...... 707/10 WO WO 2005/073908 8/2005
2004/0030556 Al 2/2004 Bennett WO WO 2007/083079 7/2007

US 9,098,492 B2
Page 3

(56) References Cited
FOREIGN PATENT DOCUMENTS

WO WO 2007/101973 9/2007

WO WO 2009/065029 5/2009

WO WO 2010/092375 8/2010
OTHER PUBLICATIONS

Agichtein, E. et al. “Learning search engine specific query transfor-
mations for question answering.” Proceedings of the 10th interna-
tional conference on World Wide Web. ACM. Apr. 2001. pp. 169-178.
DOI: 10.1145/371920.371976.*

Sneiders, E. “Automated question answering using question tem-
plates that cover the conceptual model of the database.” Natural
Language Processing and Information Systems. Springer, 2002. pp.
235-239.*

Androutsopoulos, I. et al. “Natural language interfaces to data-
bases—an introduction.” arXiv preprint arXiv:emp-1g/9503016v2
(1995). 50 pages.™

Somers, H. “New paradigms in MT: the state of play now that the dust
has settled.” Machine Translation Workshop, ESSLLI. vol. 98. 1998.
12 pages.*

Tanaka, T. et al. “Noun-Noun Compound Machine Translation: A
Feasibility Study on Shallow Processing”. Proceedings of the ACL
2003 workshop on Multiword expressions: analysis, acquisition and
treatment—vol. 18. Association for Computational Linguistics,
2003. pp. 17-24.*

Zhou, X. “Super-Function Based Machine Translation System for
Business User”. Tokushima University, Dissertation. Sep. 2005. 133
pages.*

Liu, H. & Singh, P. (2004). “ConceptNet: A Practical Commonsense
Reasoning Toolkit”. BT Technology Journal, 22.*
AumuellerRumueller, D. “Shawn: Structure helps a wiki navigate”.
In Proceedings of the BTW—Workshop WebDB Meets IR. (Mar.
2005)/ 10 pages.*

Wagner, C. “Wiki: A technology for conversational knowledge man-
agement and group collaboration.” The Communications of the Asso-
ciation for Information Systems 13.1 (Feb. 18, 2004): 58.*

Lopez, V. et al. “Ontology-Driven Question Answering in Aqual.og”
Natural Language Processing and Information Systems. Lecture
Notes in Computer Science vol. 3136, (2004), pp. 89-102.*

U.S. Office Action dated Jun. 8, 2004 issued in U.S. Appl. No.
09/990,188.

U.S. Final Office Action dated Jan. S, 2005 issued in U.S. Appl. No.
09/990,188.

U.S. Notice of Allowance dated May 20, 2005 issued in U.S. Appl.
No. 09/990,188.

U.S. Notice of Allowance dated Sep. 29, 2005 issued in U.S. Appl.
No. 09/990,188.

U.S. Office Action dated Sep. 23, 2008 issued in U.S. Appl. No.
11/318,316.

U.S. Office Action dated Jun. 10, 2009 issued in U.S. Appl. No.
11/318,316.

U.S. Notice of Allowance dated Nov. 4,2009 issued in U.S. Appl. No.
11/318,316.

U.S. Office Action dated Dec. 23, 2010 issued in U.S. Appl. No.
12/269,707.

U.S. Final Office Action dated Jul. 13, 2011 issued in U.S. Appl. No.
12/269,707.

U.S. Office Action dated Oct. 21, 2011 issued in U.S. Appl. No.
12/269,707.

U.S. Final Office Action dated Jun. 28,2012 issued in U.S. Appl. No.
12/269,707.

U.S. Pre-Brief Appeal Conference Decision dated Jan. 4, 2013 issued
in U.S. Appl. No. 12/269,707.

U.S. Allowed Claims dated Feb. 25, 2013 for U.S. Appl. No.
12/269,707.

U.S. Notice of Allowance dated Feb. 25, 2013 issued in U.S. Appl.
No. 12/269,707.

U.S. Office Action dated Nov. 23, 2011 issued in U.S. Appl. No.
13/275,155.

U.S. Final Office Action dated Feb. 16,2012 issued in U.S. Appl. No.
13/275,155.

U.S. Notice of Allowance dated Apr. 6, 2012 issued in U.S. Appl. No.
13/275,155.

U.S. Office Action dated Jul. 12, 2013 issued in U.S. Appl. No.
13/896,144.

U.S. Office Action dated Jul. 15, 2013 issued in U.S. Appl. No.
13/896,857.

U.S. Office Action dated Jun. 10, 2009 issued in U.S. Appl. No.
11/459,202.

U.S. Final Office Action dated Dec. 31, 2009 issued in U.S. Appl. No.
11/459,202.

U.S. Office Action dated Mar. 19, 2012 issued in U.S. Appl. No.
11/459,202.

U.S. Final Office Action dated Mar. 27, 2013 issued in U.S. Appl. No.
11/459,202.

U.S. Office Action dated Jul. 9, 2013 issued in U.S. Appl. No.
11/459,202.

U.S. Notice of Allowance dated Oct. 29, 2013 issued in U.S. Appl.
No. 11/459,202.

U.S. Office Action dated Sep. 26, 2011 issued in U.S. Appl. No.
12/240,699.

U.S. Final Office Action dated Dec. 9, 2011 issued in U.S. Appl. No.
12/240,699.

U.S. Office Action dated May 2, 2013 issued in U.S. Appl. No.
12/240,699.

U.S. Final Office Action dated Sep. 10, 2013 issued in U.S. Appl. No.
12/240,699.

U.S. Office Action dated Mar. 5, 2012 issued in U.S. Appl. No.
12/702,153.

U.S. Final Office Action dated Oct. 30, 2012 issued in U.S. Appl. No.
12/702,153.

U.S. Office Action dated Aug. 9, 2013 issued in U.S. Appl. No.
13/106,562.

PCT International Search Report and Written Opinion dated Dec. 23,
2008 issued in PCT Application No. PCT/GB2006/050222.

PCT International Preliminary Report on Patentability and Written
Opinion dated Jun. 30, 2009 issued in PCT Application No. PCT/
GB2006/050222.

EP Examination Report dated Nov. 12,2009 issued in EP Application
No. 06 765 371.7-1225.

Israel Office Action dated May 22, 2012 issued in Israel Patent
Application No. 193913.

Israel Office Action dated Oct. 23, 2012 issued in Israel Patent Appli-
cation No. 193913.

PCT International Search Report and Written Opinion dated May 4,
2010 issued in PCT/GB2010/050198.

PCT International Preliminary Report on Patentability and Written
Opinion dated Aug. 25, 2011 issued in PCT/GB2010/050198.

PCT International Search Report and Written Opinion dated Sep. 18,
2006 issued in PCT/GB2006/050014.

PCT International Preliminary Report on Patentability and Written
Opinion dated Jul. 31, 2008 issued in PCT/GB2006/050014.
European Examination Report dated Sep. 16, 2013 issued in EP 06
700 771.6-1951.

Israel Office Action dated Dec. 6, 2011 issued in IL Patent Applica-
tion No. 192833.

Israel Office Action dated Sep. 23, 2012 issued in IL Patent Applica-
tion No. 192833.

Ahn, Von Chapter 6: Verbosity:, Human Computation: Ph.D. Thesis
Manuscript: Carnegie Mellon University (online), Dec. 7, 2005, pp.
61-68, Retrieved from the Internet: URL:http://reports-archive.adm.
cs.cmu.edu/anon/2005/CMU-CS-05-193. pdf>m, XP007906220,
18pp.

American National Standard, Knowledge Interchange Format, Apr.
10, 2001, http://www.logic.stanford.edu/kif/dpans.html, pp. 1-31.
Anonymous. “Common Sense Knowledge Bases,” Wikipedia the
Free Encyclopedia, Jan. 12, 2006, Retrieved from the Internet:
URL:http://en.wikipedia.org/w/index.php?title=Commonsense__
knowledge_ bases&olidid=34905257>(2 Pages).

US 9,098,492 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Anonymous: “Question Answering”, Wikipedia, the Free Encyclo-
pedia, Feb. 20, 2006, Retrieved from the Internet: URL:http://en.
wikipedia.org/w/index.php?title=Question__answering
&01did=40350205>, 8pp.

Aslandogan, Y.A., et al. (Jan./Feb. 1999) “Techniques and Systems
for Image and Video Retrieval,” IEEE Transactions on Knowledge
and Data Engineering, 11:1, 1999, pp. 56-63 (8 Pages).

Baxter et al., “Interactive Natural Language Explanations of Cyc
Inferences”, Report on the AAAT 2005 Fall Symposium on Explana-
tion-Aware Computing (Exact ’05), [Online] Nov. 4, 2005-Nov. 6,
2005 Retrieved from the Internet: URL:http://www.cyc.com/doc/
white_ papers/Exact2005.pdf>, XP002397060, 12 pp.

Baxter et al., “Interactive Natural Language Explanations of Cyc
Inferences”, In AAAI 2005: International Symposium on Explana-
tion—Aware Computing, Nov. 30, 2005, XP002397060, 12 pp.
Beckwith et al, “Design and Implementation of the WordNet Lexical
Database and Searching Software”, 1998, pp. 62-82.

Berners-Lee, “Semantic Web Road Map”, http://www.w3.org/
Designlssues/Semantic.html, Sep. 1998, pp. 1-9.

Berners-Lee, “What the Semantic Web can represent”, http://www.
w3.org/Designlssues/RDFnot.html, Sep. 1998, pp. 1-6.

Brachman et al. “Living with CLASSIC: When and How to Use a
KL-ONE-Like Language”, Principles of Semantic Networks: Explo-
rations in the Representation of Knowledge, 1991, pp. 401-456.
Clark, Peter, et al. “A Knowledge-Based Approach to Question-
Answering,” Submitted to the 4441 *99 Fall Symposium on Ques-
tion-Answring Systems, Mar. 1999 (16 Pages).

Cox, R.V,, et al. (1998) “On the Applications of Multimedia Process-
ing to Communications,” Proceedings of the IEEE, 86:5, pp. 755-825
(70 Pages).

Cuppens, F., et al. (1988) “Cooperative Answering: A Methodology
to Provide Intelligent Access to Databases,” Onera-Cert 2 AV E.
Belin BP3025, Toulouse Cedex, France, Proc. 2nd Int. Conf. Expert
Database Systems, URL: http://www.irit.fr/page-perso/Robert.
Demolombe/publications/1988/eds88.pdf (21 Pages).

Curtis, J., etal. “On the Effective Use of Cyc in a Question Answering
System”, Proceedings of the Workshop on Knowledge and Reason-
ing for Answering Questions, (KRAQ’05); 19th International Joint
Conference on Atrtificial Intelligence (IJCAT’05): Jul. 30-Aug. S,
2005, pp. 61-70, Retrieved from Internet: URL:http://www.irit.fr/
recherches/ILPL/kraq05V 1.pdf, XP002450102, 10 pp.

Cycorp, Features of CycL, Sep. 27, 2001, http://www,cyc.com/cycl.
html, pp. 1-59.

De Roeck, A., et al. (Jul. 1998) “YPA—An Intelligent Directory
Enquiry Assistant,” Technology Journal 16:3, pp. 144-155 (11
Pages).

Fellbaum et al., “Adjectives in WordNet”, Revised Aug. 1993, pp.
26-39.

Fellbaum et al., “English Verbs as Semantic Net”, pp. 40-61, no date.
Fensel, Dieter, et al. (Oct. 24-30, 1999) “On2Broker: Semantic-
Based Accessto Information Sources at the WWW,” Webnet 99 World
Conference on the WWW and Internet Proceedings, Honolulu,
Hawaii, (6 Pages).

Hearst, M., “Building intelligent systems one e-citizen at a time,”
Trends & Controversies, IEEE Intelligent Systems, May/Jun. 1999,
pp. 16-20.

Heflin, Jeff, et al. (1998) “Reading Between the Lines: Using SHOE
to Discover Implicit Knowledge from the Web,” A/ and Information
Integration, (7 Pages).

Hendrix, G.G., et al. “Transportable Natural-Language Interfaces to
Databases,” NTIS, 1981 (8 Pages).

KBMS-Prototype KRISYS, User Manual Overview “KBMS-Proto-
type KRISYS User Manual”, Dec. 1, 1992, pp. 1-94.

Krause, J., et al. (1994) “Multimodality and Object Orientation in an
Intelligent Materials Information System:Part 2 Journal of Docu-
ment and Text Management, 2(1):48-66, (20 Pages).

Lenat, Douglas B., “CYC: A Large-Scale Investment in Knowledge
Infrastructure”, Communications of the ACM, Nov. 1995, vol. 38,
No. 11, pp. 33-38.

Lenat et al., “CYC, WordNet, and EDR: Critiques and Responses”,
Communications of the ACM, Nov. 1995, vol. 38, No. 11, pp. 45-48.
Li et al., “NaLIX: an Interactive Natural Language Interface for
Querying XML”, ACM SIGMOD 2005, Jun. 14-16, 2005,
XP002397059, 3 pp.

Lieberman, H., et al. “Beating Commensense Into Interactive Appli-
cations”, Al Magazine, [Online] vol. 25, No. 4, 2004, pp. 63-76,
Retrieved from Internet: URL:https://www.aaai.org/ojs/index.php/
aimagazine/article/viewFile/1785/1683, XP007906275, 14pp.

Liu et al., “Goose: A Goal-Oriented Search Engine with Com-
monsense” Proceedings of the 2nd International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems (AH’02);
In Lecture Notes in Computer Science, [Online] vol. 2347, May 29,
2002, pp. 253-263, Retrieved from the Internet: URL:http://dx.doi.
0rg/10.1007/3-540-47952-X_ 27, XP002503065, 12pp.

Liuetal., “Commonsense Reasoning in and over Natural Language,”
Media Laboratory, Massachusetts Institute of Technology, 2004, pp.
1-14.

Liu et al., “ConceptNet—a practical commonsense reasoning tool-
kit,” BT Technology Journal [Online], vol. 22, No. 4, Oct. 2004, pp.
211-226, Retrieved from the Internet: URL:http://dx.doi.org/10.
1023/B:BTTJ.0000047600.45421.6d>, XP001506477, 16pp.

Liu, Mengchi (2000) “Design and Implementation of ROL Deductive
Object-Orientated Database System,” Journal of Intelligent Informa-
tion Systems, Kluwer Academic Published. Manufactured in The
Netherlands, 15:121-146 (26 pp).

MacKinnon, LM., et al. “A Model for Query Decomposition and
Answer Construction in Heterogeneous Distributed Database Sys-
tems,” Journal of Intelligent Informaiton Systems. Integrating Arti-
ficial Intelligence and Database Technologies, 11:1, 1998, pp. 69-87
(19 pp).

Maedche, A. et al. (Mar./Apr. 2001) “Ontology Learning for the
Semantic Web,” IEEE Intelligent Systems, pp. 72-79.

Martin, Philippe et al. “Knowledge Retrieval and the World Wide
Web,” IEEFE Intelligent Systems, 2000 (8 pp).

Matuszek, C. et al. (Jul. 1999) “Searching for Common Sense: Popu-
lating Cyc™ from the Web,” 4441, pp. 1430-1435.

McKinstry, Chris, “Mind as Space”, Preprint for “The Turing Test
Sourcebook”, [Online] May 2005, XP007906221 Retrieved from the
Internet: URL: http: //web.Archive.org/web/20050501011659/
http://www.mindpixel.com/PDF/mindasspace.pdf, 26 pp.
Miikkulainen, R. “DISCERN: A Distributed Axtificial Neural Net-
work Model of Script Processing Memory,” Neural Networks
Research Group, 1990 (2 pp).

Miller et al., “Introduction to WordNet: An On-line Lexical Data-
base”, Revised Aug. 1993, pp. 1-9.

Miller, (Nov. 1995) “WordNet: A Lexical Database for English”,
Communications of the ACM, vol. 38(11), pp. 39-41.

Miller, “Nouns in WordNet: A Lexical Inheritance System”, Revised
Aug. 1993, pp. 10-25.

“Mindpixel,” Wikipedia, the free encyclopedia, Jul. 15, 2006.
Pieters, W., “Case-based Techniques for Conversational Agents in
Virtual Environments”, Thesis, University of Twente, Jun. 2002, 118
pages.

Resource Description Framework (RDF) Model and Syntax Speci-
fication, http://www.w3.0org/TP/PR-rdf-syntax/, Jan. 5, 1999, pp.
1-40.

Siegel, N. et. al. (Nov. 2004) “The Cyc® System: Notes on Archi-
tecture,” Cycorp, Inc.,9 pages.

Singh, P. et al. “Teaching machines about everday life” BT Technol-
ogy Journal, [Online] vol. 22, No. 4, Oct. 2004, pp. 227-240,
Retrieved from Internet: URL:http://dx.doi.org/10.1023/B:BTTJ.
0000047601.53388.74, XP001506478, 14pp.

Singh, P. et al. “The Public Acquisition of Commonsense Knowl-
edge”, Report on the AAAI 2002 Spring Symposium on Acquiring
(and Using) Linguistic (and World) Knowledge for Information
Access, Mar. 25, 2002-Mar. 27, 2002, retrieved from Internet:
URL:http://web.media.mit.edu/{ push/ AAAI2002-Spring.pdf,
XP002503066, 6pp.

Singh, P. et al., “Open Mind Common Sense: Knowledge Acquisition
from the General Public”, Proceedings of the Confederated Interna-
tional Conferences on the Move to Meaningful Internet Systems
(Coopis, DOA & ODBASE 2002); In Lecture Notes in Computer

US 9,098,492 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Science, [Online] vol. 2519, Oct. 28, 2002-Nov. 1, 2002, pp. 1223-
1237, Retrieved from Internet: URL:http://dx.doi.org/10.1007/3-
540-36124, XP007906290, 16pp.

Stork, D., “An architecture supporting the collection and monitoring
of data openly contributed over the World Wide Web,” Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
MIT, Jun. 2001, pp. 1-6.

Stork, D., Open data collection for training intelligent software in the
Open Mind Initiative, Proceedings of the Engineering Intelligent
Systems Symposium (EIS2000), Paisley Scotland, Jun. 2000, pp.
1-7.

Sun, G. “XML-based Agent Scripts and Inference Mechanisms”,
Thesis, University of North Texas, Aug. 2003, 55 pages.

Trehub, A. “The Cognitive Brain—Chapter 6: Building a Semantic
Network”, MIT Press, 1991, pp. 99-115.

Wallace, R. S., “The Elements of AIML Style”, ALICE A.I. Founda-
tion, Inc. Mar. 28, 2003, 86 pages.

Witbrock, M. et al., “An Interactive Dialogue System for Knowledge
in Cyc”, Proceedings of the Workshop on Mixed-Initiative Intelligent
Systems (MIIS’03); 18th International Joint Conference on Artificial
Intelligence (IJCAI’03): Aug. 9-15, 2003, [Online] Aug. 9, 2003,
Retrieved from Internet: URL:http://lalab.gmu.eduw/miis/papers/
witbrock.pdf, XP007906243, 8pp.

Witbrock, M. et al., “Knowledge Begets Knowledge: Steps Towards
Assisted Knowledge Acquisition in Cyc”, Report on the AAAI 2005
Spring Symposium on Knowledge Collection from Volunteer Con-
tributors (KCVC’05) [Online] Mar. 21, 2005-Mar. 23, 2005,
Retrieved from Internet: URL:http://www.cyc.com/doc/white_ pa-
pers/AA, XP002503062, 8pp.

“YAGO: A Core of Semantic Knowledge Unifying WordNet and
Wikipedia,” by Suchanek et al., published May 8-12, 2007, WWW
2007 / Track: Semantic Web, Session: Ontologies, 10 pages.

Yokoi, Toshio “The EDR Electronic Dictionary”, Communications
of the ACM, Nov. 1995, vol. 38, No. 11, pp. 42-44.

U.S. Final Office Action dated Dec. 11,2013 issued in U.S. Appl. No.
13/896,144.

U.S. Notice of Allowance dated Jan. 8,2014 issued in U.S. Appl. No.
13/896,857.

U.S. Office Action dated Dec. 18, 2013 issued in U.S. Appl. No.
13/896,878.

U.S. Office Action dated Dec. 17, 2013 issued in U.S. Appl. No.
13/896,078.

U.S. Office Action dated Jan. 21, 2014 issued in U.S. Appl. No.
12/240,699.

U.S. Office Action dated Jan. 27, 2014 issued in U.S. Appl. No.
12/702,153.

U.S. Final Office Action dated Feb. 27,2014 issued in U.S. Appl. No.
13/106,562.

Agichtein, E. et al., (Apr. 2001) “Learning Search Engine Specific
Query Transformations for Question Answering”, Proceedings of the
10th International Conference on World Wide Web, ACM, pp. 169-
178. DOI:10.1145/371920.371976.

De Pietro, O. et al., (Aug. 2005) “Automatic update of AIML Knowl-
edge Base in e-Learning environment”, Proceedings of Computers
and Advanced Technology in Education, pp. 29-31.

Enembreck F. et al., (2002) “Personal assistant to improve CSCW”,
The 7th International Conference on Computer Supported Coopera-
tive Work in Design, IEEE, pp. 329-335. DOI:10.1109/CSCWD.
2002.1047710.

Georges, M. T. (2000) “The Problem of Storing Common Sense in
Attificial Intelligence”, Context in CYC, Doctoral Dissertation
directed by Dr. Jaime Nubiola, University of Navarra, Ecclesiastial
Faculty of Philosophy, 153 pages.

Goh, O.S. et al., (2003) “Intelligent Agent Technology in E-com-
merce”, Intelligent Data Engineering and Automated Learning
(IDEAL 2003), Lecture Notes in Computer Science, 2690:10-17.

Goh, O.S. et al., (Aug. 27-29, 2005) “Automated Knowledge Extrac-
tion from Internet for a Crisis Communication Portal”, Fuzzy Sys-
tems and Knowledge Discovery (FSKD 2005), Lecture Notes in
Computer Science, 3614:1226-1235.

Guha, R. et al. (2003) “Varieties of contexts”, Modeling and Using
Context. Lecture Notes in Computer Science, 2680: 14 pages.
Jijkoun, et al., (Oct. 31-Nov. 5, 2005) “Retrieving Answers from
Frequently Asked Questions Pages on the Web”, Informatics Insti-
tute, University of Amsterdam, 8 pages.

Lenat, D. (Oct. 28, 1998) “The dimensions of context-space”,
CYCORP Report, CYCORP, 3721 Executive Center Drive, Suite
100, Austin, TX 78731, 1-78 pages.

Lieberman, H. et al. (1996) “Instructible agents: Software that just
keeps getting better”, IBM Systems Journal, 35(3.4):539-556. DOL
10.1147/5j.353.0539.

McCarthy, J. (1993) “Notes on formalizing context”, Computer Sci-
ence Department, Stanford University, Stanford, CA 94305 U.S.A.,
1-13 pages.

Radev, D. et al. (2000) “Ranking suspected answers to natural lan-
guage questions using predictive annotation”, In Proceedings of the
sixth conference on Applied natural language processing, pp. 150-
157. Association for Computational Linguistics. DOI: 10.3115/
974147.974168.

Radev, D. et al. (2002) “Getting Answers to Natural Language Ques-
tions on the Web”, Journal of the American Society for Information
Science and Technology, 53(5):359-364. DOL: 10.1002/asi.10053.
Shah, U. et al. (Nov. 2002) “Information Retrieval on the Semantic
Web”, Proceedings of the eleventh international conference on Infor-
mation and knowledge management. ACM, pp. 461-468. DOL
10.1145/584792.584868.

Shawar, B.A. (2005) “FAQchat as in Information Retrieval System”,
Human Language Technologies as a Challenge for Computer Science
and Linguistics: Proceedings of the 2nd Language and Technology
Conference. Poznan®: Wydawnictwo Poznan skie: with co-operation
of Fundacja Uniwersytetu im. A. Mickiewicza, S pages.

U.S. Office Action dated Jul. 24, 2014 issued in U.S. Appl. No.
13/896,144.

U.S. Office Action (Applicant Initiated Interview Summary) dated
Mar. 26, 2014 issued in U.S. Appl. No. 13/896,878.

U.S. Final Office Action dated Apr. 28, 2014 issued in U.S. Appl. No.
13/896,878.

U.S. Office Action (Applicant Initiated Interview Summary) dated
Mar. 26, 2014 issued in U.S. Appl. No. 13/896,078.

U.S. Final Office Action dated Apr. 23, 2014 issued in U.S. Appl. No.
13/896,078.

U.S. Notice of Allowance dated May 13, 2014 issued in U.S. Appl.
No. 12/240,699.

U.S. Office Action dated Jun. 11, 2014 issued in U.S. Appl. No.
13/106,562.

Israel Office Action dated Apr. 2, 2014 issued in Israel Patent Appli-
cation No. 193913.

Bertino et al. (2008) “High-Assurance Integrity Techniques for Data-
bases”, Department of Computer Science, Purdue University, 13 pp.
U.S. Office Action dated Sep. 29, 2014 issued in U.S. Appl. No.
13/896,078.

U.S. Office Action dated Aug. 15, 2014 issued in U.S. Appl. No.
12/702,153.

U.S. Final Office Action dated Sep. 18, 2014 issued in U.S. Appl. No.
13/106,562.

U.S. Office Action dated Jan. 7, 2015 issued in U.S. Appl. No.
13/106,562.

Navigli, Roberto, (Feb. 2009) “Word Sense Disambiguation: A Sur-
vey”, ACM Computing Surveys, 41(2) Article 10: 69 pages.
Soricut, (2006) “Automatic question answering using the web:
Beyond the Factoid”, Inf Retrieval, 9:191-206.

Suchanek et al.(2008) “YAGO:A Large Ontology from Wikipedia
and WordNet”, Web Semantics: Science, Services and Agents on the
World Wide Web, 6:203-217.

* cited by examiner

U.S. Patent Aug. 4, 2015 Sheet 1 of 44 US 9,098,492 B2

| 101 [102

Web
Search

BEC Nowt FEMTERTARRENT | Madonsa singis
Rardonna fups he fght
=3

';&;_t,' MR danet B

sused Madpung single s
et Madenng single o

2 TIAs TS Ry el L

A SR ‘)35“1 Y

=X

aiasavd Madonng omﬂ!’@ SN vy et o

Madonna's rey unrelsasad slingle foond de wy)

oty and aate 3

CRELAQE

SupHRrpaaes

104

sy Madonng singla
sy Madenna smqm ¥

Hoiday Medonrs ant - dikivedia the as snnsolpedia —_—

Thee wotig pent S el ot sinber 1 ot oleb ohaet And spant g Wisl of
g2 g thy ohat, Being "Fusset o3 he Madonna smqle hat fad .

st grgdaki Mot

- Shdady

Ange! MSEORTER SONYD ~ WEKipedi thae ls

Tor Radonna, read

W Japan he sang wag R
macked Madanna'q 6 2‘«; § "mgw are SHatdnpan which i3 othanedse Kngus . -i

(Prior Art)

FiG. 1

U.S. Patent Aug. 4, 2015 Sheet 2 of 44 US 9,098,492 B2

//{ 201 /{ 202

Web Fow car | help?
Search 7 qo

I — 204
- 3
No :
" o 206
- ;
NG endoreY 207

& ungvreiond v feestion o masn RDetermine whoihss got joined Iy mariage (fronnganmens)

10 annthey person 5 au siiribate which spplisgs m Madunga Louise Clocong, He fameus /
singey of popuiar musie s the current tme. ©
o 5 212
s ovalrostionofle o . —————— |
Pl ard
Madonna S —— —[210

Fan sy

s T T N

P

FIG. 2

U.S. Patent

Aug. 4, 2015

Remote Computer

Sheet 3 of 44

US 9,098,492 B2

304]\

User Interface
(Web browser)

(automated)k Human-Operated Computer
306 | | Remote \\ iystem (Web Interface)
- A ’ . Client2 ¢
306 } Remote « B
Computer 3 Cliont 3 /{ 302
306]\ Remote
Computer n Ciientn V/ 302
312 | | Remote Computer Web Interface 310
Interface | 326
328 | v ~ /_
~\ /s
I == Knowledge
Authentication o = o —
« — > Addition
— [
< 334 |
7 T -
30| profile < e Tl User
308 |, Generation ‘ . 324] | Assessment
\\ wf V\\ \ 4 \\‘ :
_ Query Natural
32 _Profil /| Processing [© * Language »
Templates | 314 | ¥ Translation |
// \\\ 4
322 | e v 318 \\\?’25}\ Translation
" Generators y . | Templates
X / System "
« ¥ Assessment . ~
320 | | Knowledge T Stalic
) . Knowledge <
Generation 31 8} Base
Server Computer System

FIG. 3

U.S. Patent Aug. 4, 2015 Sheet 4 of 44 US 9,098,492 B2

Start)

/{ 402
e \\\
o Dpssiatineraves v
.)
\‘\v //
v Run new query with relation

406 }# Run new query with negative and temporal partner { 404

relation negative switched between ‘within’/for
all of for’ (implied) timeperiod

P | 408
N /1§oes new queﬁ\{ Ves
~._retun ‘yes’z -

~_

A 4
412 }\ Answer to original
query is still
‘unknown’

Original query can /{ 410
be answered ‘no’

/ﬁ\
———> End B —
S

FIG. 4

U.S. Patent Aug. 4, 2015 Sheet 5 of 44

P
[Start

S

N
)

S
A

| 50

Set completeness
flag to ‘complete’

PN
\\
~

///
/

™~
Do we know how many
Noﬁ/\ objects to expect from this
query?

~
~
~

Set completeness
flag to ‘unknown’

| 510

[508 e

7 .
//ﬂow does number of results—_
compare with expected

number?

Run query line

™~

<
\\

.
516}
\

™~
\\
~

//
~

US 9,098,492 B2

2

| 504
>

{ 512
\/\//

/{ 514

~
~_
Set completeness

I
. , <«—More Fewer—»|
flag to ‘unknown

The same

Set completeness
flag to ‘incomplete’

B //i\\\
- .
_~Any more line
\\\the query? ///
. 7

. e
\ﬁ{ 518
Yn‘es

v

5
S |n\\

No

S

/{ 526

T
— ~

N y "
<\Flag status?/>

520

~

‘Incomplete’g;—‘Complete’%

‘Unknown’
v
Execute

remaining lines

524 |
.

Set completeness
flag to ‘unknown’

Execute remaining lines,
checking any unknown
results by reverse query
method. If an unknown
cannot be resolved, set
completeness flag to
‘unknown’

{ 522

»

End

~_

FIG. 5

\
/

U.S. Patent

process_query

[606

Get top queryline

- ~.

" Is queryline in "
“~unresolved stack? "

~.

~
- —

Retur/n No/
Complete

Yes

~.

>0

No

~
“ ~
N

7

612 | | 614

492 B2

Aug. 4, 2015 Sheet 6 of 44 US 9,098
. \\\
([Start |
N 604
TN | 602 /[
~How many lines~/ Return Yes/
. inquery? .~ 0 Complete

(616

618 (

Push queryline to Get order for this
. » Cache search
unresolved stack queryline
Yes —""1s queryline in the ™

/ ~~-_queryline cache? -

-

—

-~ —

~ —
~

.
No
v

\,
N

N,
N

P
- .

Do static KB search;
do generator search

-

_~Ts queryline all>__

~

Add queryline to
queryline cache

[622

- i . ..
< Test for ‘no’ >«Yes—_ objects and no facts ><¢——
\\\ P - L found? 7
. hgs
Fal“r";{ 810 No - 630

L,

Unknown

Return Unknown/
Completeness

- ~

_Matching facts--
—No—< 9 >—Yes»
found? -

~.

Scan matching facts and

remove duplicates
choosing shorter
associated
explanations

.

634 |

Set result according to the following:
truth query: Yes

object query & order=unknown: Completeness Unknown

order>num_facts : Incomplete
order=num facts : Complete

632

636]

611]\\
A

Pop unresolved
stack

FIG. 6

For each fact
(1) preserve before data

(2) create query for remaining lines of current

query substituting in values
(3) execute query and preserve all results

Set any_yes, any_unknown & track completeness

642 }\ Determine result
value and return it

End <

/ | 638

Eliminate duplicate
result sets

Sort out
explanations

/

/
640 /

U.S. Patent Aug. 4, 2015 Sheet 7 of 44 US 9,098,492 B2

ausweay - NMozdls $in

Wiow Ho Bowkrowkx Jowls Help

(’ Q T} Bpes2aw, womtihb. Gom s srhig 2 e TS0 R X AN 20nnel . v1 ¥ Go

-
MW low con | help?

Wodekr 7

sen Mones

vy gopetin

ar Detenmine which abjects have the wisbonship s o chitd
of fp Fresident James Bomve, e $h Presfdent of the Unilee Stales of the cunent 3ime.

3 e

e

FIG. 7

U.S. Patent Aug. 4, 2015 Sheet 8 of 44 US 9,098,492 B2

o] o Beokmuks Yawds Halp
: - , 802
- - ¢4 LY 15 oo v wontdits comdansvess shy 2y S S0 Mo Seont ~] ¥ 8o [Koh -
/
ot
ﬂ;ﬁ Hawe can i help? b F 1+ 804
WS fle s peey KON 15 s L wﬁ'jj
— 806
No
AAWTPRR
*
* e A8 of Margh 10
L b - 808
A d
*
-
-
* b
3 e Determine whather Sean Cannoery, the Seattizh
fiter abar whe glayed James Hoad is nommully resident in the United Kingdom -
af Great Britzin and Nosthern retand 5t the current time. EXRIE 809
I _
-
—+—— 810
Boree

. /[814

Theselam (Qeaator generaionyeny serurany@semycript.cem)

Theremre {generator generatar. permanenigk semsosipt. cusny:

{_rug (e iy

By sakulation { mot.ipinters sct@ nm:::ript.csm} tknow that

U.S. Patent Aug. 4, 2015 Sheet 9 of 44

translation

Start \>

L L

——

Break input string into list of /[902
sequences of recognized -
substrings

v

7 I
/ : //ﬁy remaining ~

904
\\4

US 9,098,492 B2

\

< End —No——_ sequenceso

\ / ~._Su strmgs’?//
\ /

\’/

Yes
v | 908
Select next sequence of |~
substrings

v

Locate translation templates which might { 908
match currently selected sequence

£2

/\

/
— 910
- Any remalnlng { N

/‘

/
—»<_
~translation templates’? o
\ /

~ -
~ -
~

I

Yes

v : | 912
Select next translation -
template

v

T
— ™~

-~ Does
7
" selected translatlon e { 914
template match currently //
~~selected sequence?~
.

~_ e
~

T

Yes
v

Substitute matched strings for /E 916
variables in header query

<—No—_

| Execute header query }/{ 918

v

e L 920
—Any remaining™~.
No—— " "resuits? _—<
T~
T
Yes

{ 922

|/

Select next set of results

v o4

Substitute results into /

translation resultto £
generate a translation

FIG. 9

U.S. Patent Aug. 4, 2015 Sheet 10 of 44 US 9,098,492 B2

< Start
{1 004

1002 e
e ny rema% { Translation
lines in o—» End
- translation? / OK
\T T
Yes

!

Select next /[1006
line

1008
s relatlonv[
A \named’?/

1012

A 1010 — T
Is left - /Déclass of left @r\

Yes

obj ect Yes contradict permitted left class Yes
\nar%ed’? 4\ foFr)reIatlon’? e
N ~— e
0
Reject
L Y Yes translation |
< No
PN [1014
O\
/he right object-
Yes*><>ut5|de the scope o>
1018J\\J \ the left? /
1016 — S
ht — T {1020
8 ”9 S __Ts relation [applies to], and™__
object Yes—» No

\Qned') ﬁ "~ the left object named?

\ /
No
No 1022 |}
/ \
/ﬁ cilass Ofttrl% ht cﬁr\
No contradict permitted right class —Yes
fc?r relation? 9 e

\\//

FIG. 10

U.S. Patent Aug. 4, 2015 Sheet 11 of 44 US 9,098,492 B2

Get list of possible | 102
translations

v ~
. 1104
/%e there any~__ /E
No—< ini B —
——_remaining untested

“~_franslations?
\\ //
~_ No
\(
Yes 1110
v J108 T e [1108 .
Selectnext |/~ Cancurrently ~. / Erase current
untested <" selected translation “-/—Yes—» ~ o o0
translation \\\be rejected?/ 7
\\\///
P
s N
" Howmany . /[1112
> transla’_uo?ns P
\\\remaln ! //
\\\ /,/
More 1
— None
than one ‘
One
1 i | 1118 | 1118
L // //
Display list of remaining N
translations on screen / Returnitas / ggg;%%itggf
Itranslated bg(iktlnto natulralt the // translated and use
anguage and let user selec : A
the intended one / translation / fall-back strategy
oy
>< End /L‘
~ e

FIG. 11

U.S. Patent Aug. 4, 2015 Sheet 12 of 44

& -

Edt Ve £ Houkmmhs ook jfetn

&

ﬂ 1 e . peochcis by b s Gl

N‘; 'i‘: Answer g guestion {step 1)

WaKE

et INE DR U (HEdnd,

Sy aetlion, &

X mEps

S A

ans b

i ctnd

Pa2¢

W LD iR

- -

Ao - Mozl
B £ em fpo Buckoiks Yook Help

¢

fox

€ 10 ontiewm weain, atp 20T b A ' e

How can § help?

Wi

VR P seaeed?

Weal

Heve is the answer that | found.

TR DOMORHSIE 12 R5EE O & RN

Yans I aRes e 15 S gukished A bmanaat

sesd

AT 1 MR GG BoSR

SNty

U JUEN I B e2et Flad abjerts to witch The tH36 movie Fars bas

wak p 3t timep FSOEON

2 0e dotaied svpkansdan of

Pone

Fis EW Vivw Jo Boukiohy fuok femp

- -

¢

8 RN DTS- e Y b S se liGL

NQ'; '?.: How gan { haelp?

hée Zapnad ot Franoe?

WardRE

Yes

R
e CApRa city 0f The Repubit of France ak the currsnt tins. sxpian

o i Determior whettes (e Freouk city of Parts s

el evphanasian o

A 1T o

US 9,098,492 B2

) {1202

/{1204

FIG. 12

U.S. Patent

Aug. 4, 2015

H

Abraham Lingoln

{abraham fincein}

Alrshoy do MRm

Sheet 13 of 44

/t 1304
/

US 9,098,492 B2

/1{@': I4ow car | help?
w

]

[1 306

How cand help?

€

P lE !

Abraham Lincoln

[abraham lincoln]

FIG. 13

U.S. Patent Aug. 4, 2015 Sheet 14 of 44 US 9,098,492 B2

"“;W How con help?

WnARR .

[fact.1146329@semscript.com]

{software developer] [is the main occupation of] [william

wnstafl-pedoea] ///[1403

T

+ Uninftoenced (s aor is ot aomivaniateds by off g 3t rendere iy oer
Rzt

R R el DR

’(1409

Wiy HSDESTIENE
Raporter Sowce Darument Time hetes Emdwr&en\e%/ /|: 1 4 1 O
Foifizry tunatad-vednel dtan funsrainzdes TORE-0-0% Trdarsed
\\\
| 1402
“‘;ﬁ Hivee can 1 hedp?
Wl MR
go |
"""" William Tunstall-Pedoe

fmend

Twilliam lunstall-pedoe]
William Tunstall-Pedoe

fwilliam tunstall-pedoe]

o iunEER e W

Recaent fact asserfons

Thrn Fact Zource Documund
DA R RN d

R RN Fi

30 TG e aanrRi] iR e st at-ae
il

U.S. Patent Aug. 4, 2015 Sheet 15 of 44 US 9,098,492 B2

P ——

(Start >

~—

Retrieve list of classes of which
object is member

Eliminate all classes which do not
have an associated display template

Use Knowledge Base ontology to
identify the most specific (smallest)
of remaining classes

Use associated display template to
display a profile screen for the object

End

FIG. 15

{1504

U.S. Patent Aug. 4, 2015

Sheet 16 of 44 US 9,098,492 B2

Start)

Select a profile template

Parse the XML into a tree /
structure of
document_node objects

Call the render() method /[1606
on the root node

(recursively executing
render() on all child
nodes)

result to

/[1608
Display the returned

the user

FIG. 16

U.S. Patent

Aug. 4, 2015 Sheet 17 of 44 US 9,098,492 B2
, 1702
S
//
| 1708
/ /
<tmpl:query id="dob">"
query trans
date [is zhe date of birth of] Sobjesct
date [commonly translates as] trans
</tmpl:query>
1710
<tmpl:qucry id="birthp_acc”>”
query trans
place [is the place of kbirth of] $object
place [commonly translates as] trans

</tmpl:guery>

<hl>Sobject</hl>

<p>Date of bir:h:/<tmp;:value—of cuery="dob” select="trans” /></p>
<p>Place of birtH: 7tmpl:valuefof query="birthplace’” ses_ect="trans” /></p>
>

o
/S
y

Process template with object=[sean connery]

| 1708

e

| 1704

~
-
-

<hl>[sean connery]</al>
<p>Date of birta: the 25th of August,
<p>Place c¢f birth: Edinburgh</p>

1930</p>

FIG. 17

U.S. Patent

Aug. 4, 2015

Sheet 18 of 44

US 9,098,492 B2

<tmpl:query id="european_cities”>
gquery country,

city

country [is an instance of] [nation state]

country [is geographically located within] [Eurcope]
city [is an instance of] [city]

city [is gcographica_ly locatced within] country

5
1808:L </tmpl:query>
\

\<tmpl:for-each query="europesan_cities” select="country”>

10 <p><tmpl:value-of query="eurcpean cities” select="country” />
1810 -
— “~<tmpl:for-each gquery="european_cities” select="city”>

<tmpl:value-cf gquery="european cities” select="city” />
</1li>

15 </tmpl:for-each>

1812 </p>

\ </tmpl:for-sach>
‘“Wtmpl:for-each guery="european cities” select="city”>

20 <tmpl:value-cf guery="european cities” select="city” />

</tmpl:for-caca>

» Process template

Lonuiey

/[1804

-

i b

vt et Pt

&
pa)
Z
e
e:

Pares
Londen :
Cannbaidge <p>Gormany
?

/ Ber_in</1li>

/ trankfurt
/
/ </p>
<p>France

Paris</1li>
 s
</p> e
<p>bkngland ’

London
Cambridge

</p>

by
5
4

7
7

Berlin
Frankfurt
Paris
London
Cambridge

FIG. 18

U.S. Patent Aug. 4, 2015 Sheet 19 of 44 US 9,098,492 B2

authenticate

e

< Start >

.~

A 4
1902’\ select_object
— process
(with parameter
[human being])

Y.
Py [1 904

—
__—Does selected entity~ \/

No \\ have a password’? Py

Y
1906} / ?

/ Request a new / / Request
assword the
/ p
/ {(entered twice) / password /
| {1910
B /
1916*\ / Explain / ‘Invalid /
// problem, and // _ password /
/ request again / /71914 Try again.’ //
N
Nt) P s \\\ N
L\//Are both entries the\\/ 1908}\ /Is password\ N
T o
~same and perm|SS|b§?/ \\ correct? P /}
~ /// ~.
T T
Yes Yes
A v
ssociate
1918]\ password with the
entity in the ,{1920
knowledge base pd
\—> Log userin
X,
1924} Make assertions 7 \\ [1922
~_|about user’s rank, «_Yes /h/new user, was\
and associated i\he/she added? -
timeperiods \\\ ///
No
oy
1926} add_corefacts / End A
—
process \)

FIG. 19

U.S. Patent

Aug. 4, 2015 Sheet 20 of 44 US 9,098,492 B2
select_object
4 AN
< Start)
.. S
2002} v
/ Ask for the desired /
object. (Appropriate /
7 language defined by /W
/ parameters.) /
Query knowledge —
base for objects with /72004
specified class which
match string
/ﬁow many ~_ {2006
~~._matches? - 7
~__—
2010 | None f More than [2012
¢ One one l/
/" ‘No matches / / v 7 /" ‘Select one of /
Ge fhi o
found. Try / /18 this correct: /| 2008 / the following, /
/ . / / [Yes, try again, ~ / / . /
/ again, or or add] / try again, or /
/ add?” / / add? /
2014 N
~"Handle ™-
~.response "
fesponss | 2016
//\\ /' Explain //
Try " Is class \¥ why object /
again \ Add complete’?/ Yes»/ can’t be
Object \T/ / added /
selected No \\{2018
{2020
Reset T ACt
specified class 4 \ac\cglrsslr;g to/
6/\\ \//
2034] /.// ould thg\\
Yes \/ intended object \/ other [class]
- be aclass or//
\relatlon’;/
Yes /" Ask whether 2026 [relation] add_class
/ itsaclass A T process
or a relation / {2030 \
No g [2022
ZOSZH l/[add_relation
2028 process
/1/3 the mtended\ - add_object \[2024
H\object aclass ora >—No»| rOCEsS
. relation? P
\\\ ///’
S) /—iﬁ .
» End

FIG. 20

U.S. Patent Aug. 4, 2015 Sheet 21 of 44

add_object

US 9,098,492 B2

/ N
([Start |
\ /
2104}\ ¥ .
s Request common
/ . /
/ \ .
output translation %/[2102
; 7
Yes ObieCt fouid ~ ? string, and check /
\T/ / for matches /
2106} i
P Request object’s ’;21 10
(Can a Principal Clasé\\ ~ No» class =
~~.__be established? // (select_object
S 7 process)
~ 2114
T : N
es 2112
v /// \\\ / ‘Are you sure /
Set Principal o mén a Principal Class~.__ N / thatthisisthe
Class for object be estabhshed’?/ ~ / most specific /
g T 7 / class?’
2108 | T |
s clasa~ oot g | 2118
Yes — Isclass "~ ., | | select_timeperio /
21 20} ~~_permanent? _for_fact process
~ T~ —
) \\&/
/ Request unique / \[21 16
/ recognition string, /
/ and check for /o
/ matches /
/
/[2124 | 2126
Hmzz / e
/// \\\
Y% Yes— Ot ObJect found’? >—No denotational < Object fOUﬂd?/\)—N
o strings 7 v | 2128
e
Make assertions Yes \r T
Yes s object an~__
-/ 2130 ° ~._attribute?
— N ~J -
01057 21321 —
- Requzzto O:JeCt,S / ‘Is this / Request an ID for No
P) — attribute the relation, and €«——
(select_object o heck validi N
process) / permanent?’ / check validity {2134
/ ot / /
If object is a person, and /) Request a /
/ user is not logged in and VY documentor /
— not here via authenticate, /4—/ {optional, and /
/ ask whether person being / / only if appropriate /
2140] / added is the user VY for class) /
// N
2138 |~ N 2136
Make assertions] add_corefacts {2142 [
process
»/
> End FIG. 21

U.S. Patent

Aug. 4, 2015

“ﬁ;ﬁ i an obiect {step 23

WaldKB

o aame e e shferihiat

adding,

s

Sheet 22 of 44 US 9,098,492 B2

TR aas an abjent {step)

WondR¥

PR NGO

Ve,

o,

add an abject (step 5 - cplent a cass {steg 13

e Uregon s,

2 S el Y

& et
ooy

" fry ague

RPN

AR o

E—

2ohie Bt Cregnn

add 2 US otate {atep ¥} +

seloct a poricd of fine (step 23

haal peintin drme wi

HCLRER

\[2214

NPT s 6 U state (step K

P ilE

select 8 paniod af time (SIep6)

5 1t o Fetwiane 180T

DNt ety

autentt

[2218

3 stata (step 7y -« ket] peried of fHmn (Stop 1}

w: ardd a B8 alate {step 7) - solect 2 period of Hma {step 33
e T SEISCE @ tRrepotng {Slep 23

e

1;' v ; aeid 5 UE state {step 8)

$

R s { So & sheld e distney i Fa darie

TR PRI T3 Senehag: e

F et At god

U.S. Patent Aug. 4, 2015 Sheet 23 of 44 US 9,098,492 B2

“";-?*; it B US State {step 10)

TR

otz v

W 23giog Drngan BN v A sl

e iy sain

{2302 '

e

DU W M alele & oay

Add 2 1S state (stap 11) W

WarkiXE

o

Nty Oregom Flare @iy an

Qragat i e

PR T s

oA e

iy

Aoz

T e A ol F ey

Qs

ol he Lin

3 Y ales oTATiRE SEALE VA

P

STt Ve

3 Eae o Drean EIUR N S

SR Yl
of Wheaeic Canoietens furngang SIS VoL
Can denois fnregand
03 ke stats of Qroana’ gan,

SRGERDIH

Mase faels. ¥awre &l ol

SR Vi

LICH

A

o caan § halp?

i Thank you. foregon] has been added tc the Knowledge Base

\{2314

FIG. 23

U.S. Patent

Aug. 4, 2015 Sheet 24 of 44 US 9,098,492 B2
add class
g N
(Start)
AN S
2404 | v
//)\\\ // Request common // 0402
vos—Omctiunay < Sy imaien L
\\‘// / for matches /
No
v . - 2408
/ Reque_s_t unique Py Add
/ recognition string

// string, and check

/Lw\ébject foun(g/\—N .

| 2410

denotational

Find subclasses of parent

for matches ~ strings
\\ Yes - ~
[2406 ¢< Yes—— ¢ Object found”f‘\ {2412
\\ //
/[2418 /[2416 "E

h 4

and ask whether each is a

Request most specific
distinct class from the class

parent class

Generate new

plural forms and ,/[2414

(select_object process) get user
being added —object p confirmation
///i\\
2420 43/ arent cl;;s / ls this class /
4 Zrmanent7 /\ Yes»/ permanent or
\E’ temporary?’ t2424
\\\ /// /
Y
No
2422 v
]\ Class is
temporary 2426 | 2430
/)k - /[
— ~ . .
_Does parent have- / Is this /
Yes— ~ No»' class
~~Principal Class? - T o o)
Pt Principal? {2432
2428 | T~ P
Class is not Yes - Is class ™
Principal \\Erlnmpag/
2436 | S~
\ T
/ Request / No
Request an ID for / confirmation y
the relation, and 4—/ that there is n,o /g—‘
idi \
check validity / Principal Class / 2434
2440]\ v
/ Requesta
documentor
(optional) / {2438

FIG. 24

U.S. Patent

Aug. 4, 2015

Sheet 25 of 44

US 9,098,492 B2

s qenin e

|

RTINSO RSN A

N 2504

add & class (Step &)

Fronge o

P Al e

¥ CnRn PRt

SN

DESHERIE

vy,

ontTy the

i SR T

/ ~ 2508

Py

2 s PR

Ao it

oot e

200 52

o

> ,,‘ add o closs {atap 111 » sefact 4 class (stap 23

o gt K

Wold KB

WPE dd s ces

s (Step 121

Geieping Bed v e et
i3

St s of stidens, aaidng fa

e v ot el

1 abar

[2514

FIG. 25

U.S. Patent Aug. 4, 2015 Sheet 26 of 44 US 9,098,492 B2

3 st

A LN

atamn 3 i

S0 e o

wnz, AN bl ha b

s

h \{2604

W add 0 ciaas (step 18) EP g w class (sinp 20

M- VSRS

i grema

e

E [2606

TR dd a s (sen 27)

RIS A

et woery ton mush abant i g

1B,

20

",W: tHow cun | halp?

!

W

sgurser Vaa

s i fwqucts] S You

o jsemunia} Yot

Yo

FIG. 26

U.S. Patent Aug. 4, 2015 Sheet 27 of 44 US 9,098,492 B2

add_relation
// \\
([Start)
AN /
2704 | v
//>\\\ /" Request common / £2702
~ Ves “Obiect found?™ / output translation [
\\\J //'/ﬁ string, and check /
\\r/ / for matches /
No
v | 2708
/ Request unique // N -
/ recognilion string / . S Add present | ~ 2710
/ string, and check ~ / < Object found? No central strings
/ for matches / S~
N Yes
[2706 L a2
% Yes——<_ Object found? > —
\\\ ///
e
/,[2718 No
) 4
(Collect) Request highest class of Request highest class of
properties of right object (select_object | «— | left object (select_object
L relation y process) process)
o .
,—g N 2716 o 2714
Add left | 2720 L L
possessive |
strings 2724 |
}\ {2726
G t -
T T r:;]:rrw? :e:‘ter\gl Request an ID for
< Object found? >——No—» P the relation, and
~2 - forms and get -
~_) : check validity
w<{2722 user confirmation
Yes 2730 | i
\ /' Request a //{2728
Make assertions documentor //
Make assertions / {optional}

7 v
2705]/ / Request a more general form /
/ of the relation (optional). If /
/ relation is not symmetric, and Z/{2732
/ is not itself a reverse form, /
/ request the reverse form of /
the relation (optional) /

Y
Make any remaining /{2734
assertions not made |-

earlier

FIG. 27

U.S. Patent Aug. 4, 2015 Sheet 28 of 44 US 9,098,492 B2

Sty rol

390 A relRUon {5tep T

sy 12 selattnshin, e

Lot

SHBIT

LRIt

2 e ha

The

0wt

P

orene §

3dd 2 relgtion (Step)

P Covibizeo ity i Tarsdizer i s

AT

» A fs residentin B
srdevit (roomaly) fn &
&

* A residen abid
~ A fs iy sy &8
o Advec o &

* A de hving at 8
» Afves at B

ST CAIINA s R g2 SR The

p 1Y - selnct @ class (sfap 1) ";W add 2 relation (step 12}

Wl A

Leiongs e tire doke of 15 resident v, <

FIeEs? farion thas b ouet ey

nengrdptocat aea,

2 v gy that E Bsrsa B T

anything other then 3

wtiag ot by 2are Tha Susterm

FIG. 28

U.S. Patent Aug. 4,

2015

Sheet 29 of 44

US 9,098,492 B2

@ relation {Step Y

awd a refatian (step 14

add a relation {step 18}

gy det

AT T

¥, does it

AR

SENEE T sEy A that

add a rolating (slep 18)

= vas

awd A relatlon step 23

N

RoRr Siced

b E1t e BN B BE L Qi Tl e

add 2 relabion {siep 25}

add 3 rolatot (step 26}

it st GRe getean

e Lonfiva thath

Trars ghi

TeRiEAt i % periuter JRnye

FIG. 29

U.S. Patent

Aug. 4, 2015 Sheet 30 of 44

US 9,098,492 B2

WareKR

add 4 refation (step 27

aud 1 relation {step 28]

ANNOY i T

\[3002

WendBD

1 W, A i s relation (step 23) *

-

S
Wedd KR

wdd & relstion fstep 303

e Hy
then

add A relativon {sieg

k23

§
Lauwae §

add @ relation (stee 39

1R 2087 133

gy,

e rasidar ot

wa

vig msidnent ino e

{3012

Qa4 ¥ relution (step 35

e hoey 2 tesitent faf 4

ey Sk Sthwes

230 bt

FIG. 30

U.S. Patent Aug. 4, 2015 Sheet 31 of 44 US 9,098,492 B2

| 3102

-
"’, v: add & relatian (step 26 ® Add & relstion (Sep 4G5

P

ALOINE VoL @y

EED

B In s residem Ing
s resident in)

LRGN IS residedd in)

oo fis easidens ing

LENTSL B SRS resifent i)

G CeSHITHT i

aof B Tesident in

iis regident iy A

: ’.ﬁ add A reletion {step 43)

RaStfva:)

QLR g

N

fis restdent ind SRGLE
wibe e i} B
YR I sz W fis resideat in} BRI Yiw

e sstmrion i e e e oy atbdbueg which s

s

RO

“resident ind

b S it

fosnpian

et

PG g eemedy OF o ool ih

itx b fix reztdent i)

R R EAP RN SR I | Hotd

servirens i an et isn e atich 2asin i s

LR

aurce Y
reshtent ing B Rt

T 0 e

N

savrer Vit

s

A wlis
restdent

e restnt in] i', Tw- ndd a relufion (step 34) —~ selent u refotion (step 1)
fis coxbiont in
fis resi3ent in}

¥ lis resident in} WRIE!
o T reaidieet in}

24 sttt St o0 T resideot i}

LN

i pae B

RHETE & e of I eisinten In

2 ower, oY s resMent i)
pis reaideat nf

iy LR I RS Pt The Syatetoowil wze this 1o by e tind weatont i

R it Brere

NP B,

v wd e Fa

{ T s

F ey

Ty, gz

ﬂ‘;w axid & reiatian {Step 45}

WA

IR IO,

L AN 4T I BIRCE Gk Of & SR GRIEg Ten

B

\[31 12 iThenk you. The relation fis residen: in] has baen added ta the Knowledge

Baee.
\[3114

FIG. 31

U.S. Patent

assertions

Add source to

for assertions

1Source selection

Aug. 4, 2015

" sources available —7/ source available, user
/ can associate sources

Sheet 32 of 44 US 9,098,492 B2

. Start
<) | 3204

/ Show
assertions to be /
made, /
/ highlighting /
problem ones

PO
" Are all ™~
- .
< assertions
“permitted?
N -

v/ /

Yes

3202 |
- No

A 4

/ Show assertions to be /
/ made. If more than one /

/4{3208

with assertions /

rNOQ

1/{321 0

N

Add new e -

\
—<"User response >—Di —Y
source U p e Disagree

~

Confirm /,[3206

Return user to
//Y\\ /[3216 appropriate step
- Isuser ~~_

™~ in?
~logged in?-
~_

3218}

Authenticate
process

Yes

A 4

ke /{3220

assertions

FIG. 32

US 9,098,492 B2

Sheet 33 of 44

Aug. 4, 2015

U.S. Patent

€€ Old

zzee | | viee

sbuLis 108[qo
jo 81| uinjay * m pu3 v * punoj uinjey

108[qo %<
slee \ ay) sjousp) do 1010 Buiys \ﬁmrmm \%momm
saselyd asay] 1S weea 8y} 81818

et LU0, mc_:w Lou_/
wwcoayv °N \/@zme Auy
vomm% i he

i ”

Buuis e a)o|op 4O \ \ - sIy) \
‘ & :
\ / / sbuiys Buippe dois / Bus uesw juop

L) BWLIUO 10 “108[qo 8y} Jo,
A psuiiy 3 >—oN 108170 8y} Jo} au) ppy nof ains
Buujs [euoiejousp oLEe
noA aly,
e 1senbay

omm&\ soge | W

coge |
ains \wcoawy
aInd /@\ s Eﬁ

aee |

Jels

sBulis [euolejousp

U.S. Patent

add fact

Aug. 4,

2015 Sheet 34 of 44
(Start >

——

/ Request the //4
» whole factas /

)

/ a string /
//

| 3404
- . ~
_€an string e/

3408 —
}\!E No o \parsed?/ -

/ Request the

/ objects and
/ relation /
A

7 ~_

/

//

-

ey N
_All present? >—Yes-»
~. e

US 9,098,492 B2

3402

34061

Parse string into
fact elements
(and timeperiod if
there is one)

3412}\i

. Send relation
= to

select_object
process

Yes— >

7

3418}\

N~
3410}> :

v

Send second object to
select_object process
with class <right class>

Send first object to
select_object process
with class <left class>

Find left and
right classes
for relation

3420}

\\\
[3416

/" Display translation
/ of fact to user for
/ confirmation

/
/

/ﬁE 3422
/ .

PN

No

// \\
< Confirm? > Yes i

N e
~ -
~_

//

Yes

L
N

3414}/

| 3424

N

/an we infer fact\Ps\

~. o e
~ permanent” -

.
.

7
e

/

3432 |
N\

‘How do you /
know this?’

3440 |
] ™ Source selection

.

3434 | ooy
~Ts source™.
<
~the user? ~
\\\ e

(

No

es»<

3428]\

/ﬂiNOﬁ

3436}/>\\

- >

" Is user ™~

~Jogged in?—~
i\gg nz

e

No

//\ -
_Ts source™__
\{rle user? -~

T~

T

Yes

select_timeperiod_for_
fact process (with
timeperiod if one
already specified)

v

>—Yes»
user

Animate source is

\[3426

o

.

Authenticate
process

| 3438

Assert fact (and timeperiod if
relevant). If fact already exists,

{3430

this will count as an
endorsement.

\[3442

FIG. 34

U.S. Patent Aug. 4, 2015 Sheet 35 of 44

n?

ot

Queen Victoria

{queen victorial

iR

IO 10 SIOHE B

”*, w: How can | hetp?

frsan

Queen Victoria

fqueen victoria]

Gl R I

FIG. 35

US 9,098,492 B2

/[3502
/!

){3503

) £3508

U.S. Patent

Aug. 4, 2015

add_corefacts

Sheet 36 of 44

7 N

e N
_~Does the Principal™.

—No—=<
AN

AN

/
/

, _ | 3602
~Class of the object have ~.~

e

any corefacts e

\gssociated with itz/

N e

Yes

v | 3604

Create a listof |~
the corefacts

3606 / Ask /
}\ / question /

A

US 9,098,492 B2

aboutnext /
corefact /

A

Send answer object
to select_object
process with
relevant class

\] | elements to

3612}

v
Send corefact

add_fact
process

l

TN
e ™.
“__Any moré._

~corefacts? Yes

!
>< End)

FIG. 36

U.S. Patent Aug. 4,2015 Sheet 37 of 44 US 9,098,492 B2
select_timeperiod_for_fact
v —\\
(Start |
/
/
/‘Is the fact //{3702
true now? /
/
3704 | A— /[3718
“ / :
/ Request / Use /[3706 / IE);pIam d /
/ earliest known / select_object / / problem, ?n /
/ time when the //—’ process to create / earlrizg;f:own /
/ ing ti i /
/ fact was true / starting llmepomt / time again
// \\
s fact true™-
N
3712 | Nom = nowr Y¢S
) \\/// i
/' Request latest / 3708J/
known time / Ending timepoint
/ when the fact / 3710}/ is [iafter]
/ was true /
/ ¢ i
PN
3714 | Use PN No
\ select_object //i(re timepoints™._
process to create 7 _reasonable? T\
ending timepoint ~_ 3718
Yes
3722
A v
e N
/" ‘Could <fact> / e S
have been true / /l/flrst timepoint [tlme\ {3720
/ before <earlier /@NO% N zero] or [earliest \/
/ timepoint>?’ Yes, / “~._meaningful point]?
/ no, or don’t know / N e
\\\ e
3724}\£ T/
3726 7 Handle S Yes/
N Yes
J AN No ~Jresponse Don’t know
~_
Create timeperiod o
object prior to fact
(from [time zero] to
first timepoint of fact)
7 ~
Y //1§ fact truE\\ /{3728
v es . now? -~
Create timeperiod [3730 ST
i |
object after fact (from |/
second timepoint of No
fact to [iafter]) v

{3732
Create timeperiod |~

object for fact

FIG. 37

U.S. Patent Aug. 4, 2015 Sheet 38 of 44 US 9,098,492 B2
source selection
</ Start)
N /
3802:\\ /fsgourc; a~
\<\ url? /> Yes
e | 3810
Y Sh . tent /
v ow conten
3804]\\ Identify source // of page found /
(select_object process) / aturl, and /
/ request /

confirmation /

.

‘/ ~
- S
Animate4/ [s source animaté ™
“~._ orinanimate? - \
O [3806 /| 3812
.
[Store content of
Inanimate page found at url,
+ and associate
///\\\ with an ID
7. . e
Y. " Is animate creator ~~___
Yes ~source already known?- \
~_ Y3808
No
v | 3816
3814}\ / Ask whether an / P
) animate creator / " Handle ™
source is / “._response_—~
/ known / \T/ No
Yes
|
Request animate /[381 8
creator source 4
(select_object process)
If animate creator source [3820
should always be e
associated with original
source, assert this fact
. | 3824
3822 | -
j\ Return animate Return inanimate
source ID source ID
7 ™,
» End Q
AN

FIG. 38

U.S. Patent Aug. 4, 2015 Sheet 39 of 44 US 9,098,492 B2
assess fact
//—\\
([Start |
. S
Check that user is /{3901
allowed to assess [
the fact
3902 | *
/ \
’—<\ /Is\user Ioggedi}?\hNO
Yes \\// {3904
H e
39081 Authenticate | |
process
Construct a ‘time // \\
\ , " Is fact N
history’ forthe «—Yes— < transient? o
fact ~ ~
7] 3906
Request user’s /
/ assessment of /g No
/ time history k3910
i /<[3914 | 3916
s user ™ _Are there a\ny\ s user
< contradicting >——No—»<__ timepoints to ask ~>——No—»< expressed any >
asic fact? about? opinion?
\b\\ actz~ \\\r — - Opinion? -
3912 |/ Yes 3920 |. Yes
v Construct a new ‘time
3918} Request changes to history’ for the fact
.| each timepoint, and based on user’'s
check validity of assessment, and ask
resulting timeperiods user to resolve any
inconsistencies
39221 / ‘How do /
Yes » you know P
/o this? /
3028 | | 3924
™ , s source™
Source selection No >
\tbe user?//
~
T
Yes
3930 | Determine , v 1| 3926
| assertions and/or Animate source is |/
assessments, and user
make them
//4;\
FIG. 39 e

U.S. Patent Aug. 4, 2015 Sheet 40 of 44 US 9,098,492 B2

system assessment

ST,

< Start >

S e

4004]\ Set veracity & Sum the endorsements 4002
| challengeability & contradictions for this |

state initially on fact, weighted by user
this sum history/trust

4006} Temporarily mask fact {4008
.| Create a truth from static KB &

AN
query for this fact execute query in full
mode

L {4010
N

//Result cf\

uery?
~_q y//
~

No < > Yes

Unknown

4012k contradicted=true 4014J\ ¢ contradicted=false /L4016
superfluous=false \| contradicted=false superfluous=true
veracity=false superfluous=false veracity=true

Update related facts /[4018
table using concise
explanation

v

Update fact table
for this fact

/[4020

Pt

" Veracity ™~
?

~.changed? ~

4024 |
\ | System assess

related facts No

(avoiding loops)

y /[4022
es

FIG. 40

U.S. Patent Aug. 4, 2015 Sheet 41 of 44 US 9,098,492 B2

[4103

Mow can | hoelp?

i ax o

e thes Fast o e

| respanse.

St SN e e

sy |

K

tac dafanRating i

GUERR o S earradinlica®

W e he
3 How oo halp?
B (03

(REARY

WAL

v your contributiond

o pRasR BoY Vou hawe suctashilly notiradictd tie fark that Erglate is the bicthplooe ot fhacetose
Nightingate.

e anad far 2 malitines o R Y

REU v iy i

4 prkaiy

Ay S infr : ERR S

2eted B Haen

COEE doETeT ASSRLC LNUL wiA

o Proxescy, leakvs

ann D3gead
G20 12 YN

¢ that England is

[41 06 [4108

How can | help?

Fvhas 1

Marss 4t Hhe currest tme. §

SianEs AUl AN

| 4110

FIG. 41

U.S. Patent

Aug. 4, 2015

abuse prevention

Sheet 42 of 44

US 9,098,492 B2

,";”: How can | haip?

e

WeAIER '

N
\{4202

add 1 fuct (Step 1)

L PRt eI Y L TR,

¥ it oy vk o Eogneennn il g

e arn 2 ay MA v e e Tree o e fetif

saponse

W g AarempiRd 1o Ex st frves in Ficton ard sades for Figten.
(33

The fact cannel be added because facts lie this 2% 100 subjective to be

R PTTETL Reul E s e 4

2 R a0l gt o &

Y oud s et cuten 103

Weridad

Hing car i hsfp? /

%

"Wenatlt v

s Thank you. The fact that youwers try}r’xg tor sssert produced the following
I rRSDONSA,

This fact is contradicted by the fobowing facts:
‘persan is permanent

o Tt

Sobioe

if any of thesa are incarract, piease click on the incarvect anes and contradi
tham,

hﬂ;w Fionw can ¥ haip? i

WodaKE

[fact. 1148689 @semscript.com]

fwilliam smith] fis an instance of] {pig]

faralten,

ISRERORE S R

REvENY SRTERLTENNY

Fofarsement

Hepovter Source Dacument Tume Notes

U.S. Patent

Aug. 4, 2015 Sheet 43 of 44 US 9,098,492 B2

RN
(Start)

/ Request // {4302

query

Pass query to
knowledge engine
and store result

Pass query to
search engine and
store resulting list of
documents

| /[4304

/[4306

Combine and
display results from
/ both knowledge
/ engine and search

engine

// 4308

FIG. 43

U.S. Patent Aug. 4, 2015 Sheet 44 of 44 US 9,098,492 B2

e
s

(Start >

~_

| 4402
Collect query '

Analyse query using
knowledge engine; {4404
convert into form more
suitable for keyword
searching

Pass converted /[4405
qguery to search
engine

|

Return resulting list /{4408
of documents

FIG. 44

US 9,098,492 B2

1
KNOWLEDGE REPOSITORY

1 INTRODUCTORY MATERIAL
1.1 RELATED APPLICATION DATA

The present application claims priority under 35 U.S.C.
120 and is a continuation of U.S. patent application Ser. No.
11/459,202 filed Jul. 21, 2006, which claims priority under 35
U.S.C. 119(e) to U.S. Provisional Patent Application No.
60/704,683 filed on Aug. 1, 2005, and U.S. Provisional Patent
Application No. 60/781,517 filed on Mar. 8, 2006, the entire
disclosures of both which are incorporated herein by refer-
ence for all purposes. The present application is also related to
U.S. patent application Ser. No. 11/318,316 filed on Dec. 23,
2005, now U.S. Pat. No. 7,707,160, which is a divisional of
U.S. patent application Ser. No. 09/990,188 filed on Nov. 21,
2001, now U.S. Pat. No. 7,013,308, the entire disclosures of
both which are incorporated herein by reference for all pur-
poses.

1.1.5 SUPPORTING DOCUMENTATION ON
COMPACT DISC

Supporting documentation including examples of knowl-
edge base ontology and generator script (appearing on page
140throughline 19 of page 148 of the application as filed) has
been submitted as a Supporting Documentation Appendix on
two duplicate compact discs labeled “Supporting Documen-
tation Appendix for U.S. patent application Ser. No. 13/896,
611.” Each of the compact discs includes an Adobe Acrobat
electronic file that includes the supporting documentation
with the file name “Supporting Documentation Appendix.
pdf” created on Dec. 11, 2013, at 5:56 PM, and occupying 97
kB of memory. The entire contents of this electronic file are
incorporated herein by reference for all purposes.

1.2 BACKGROUND

Currently almost all the real world information that is
stored on the internet is stored within documents: web pages
or other files containing natural language. These documents
are held on millions of computers and if linked with hypertext
links are done so according to the whims of the individual
authors. The documents are in a large variety of different
formats and written in thousands of different natural lan-
guages. This information is unstructured.

This information is also designed for human eyes.
Although natural language understanding has always been a
major research area in Artificial Intelligence, computers are
not capable of understanding natural language to any great
extent. As a consequence, a human user wanting to find some-
thing out using the internet has to first locate a document that
might have the answer and then read it. To locate the docu-
ment, the only practical current technique is keyword search-
ing.

In order to find information using keyword searching the
human user first hopes that a page/document exists which
answers the question, hopes again that it has been indexed by
a search engine and then tries to imagine what distinctive
words will appear in it. If any of the words guessed are wrong
or the page has not been indexed by the search engine they
will not find the page. If the combination of words requested
is contained on too many other pages the page may be listed
but the human user will then have to manually read through
hundreds or thousands of similar documents before finding
the knowledge required.

20

25

30

35

40

45

2

In addition there is a certain arbitrariness about the words
being used. Searching for general information on a person or
product with a unique, distinctive name has a high probability
of success, but if the search is for someone with a common
name, or for information on something where the name also
means something else (searching in English for the Japanese
board-game “Go” is a very good example) the search will fail,
or an extraordinary amount of extra human effort will be
needed to locate the information. Furthermore, different ways
of describing the same thing mean that several different que-
ries often need to be made or the search may fail. For example,
a search for information on “Abraham Lincoln” is likely to
produce a differing list of documents to a search based on
“President Lincoln” or “Abe Lincoln”.

Certain other types of queries are also extremely hard to
answer with keyword searching. Examples are searching for
any type of information which is dynamic. An extreme
example would be the local time in a specific international
city. This changes every second, so no web page indexing
technique is going to be able to tell you this information at the
moment of the query. Another example of a dynamic query
would be to ask what the market capitalization of a company
is at the current time. The answer to this depends on the
precise share price of the company involved. A further
example would be trying to discover the current age or marital
status of a celebrity. Pages containing this information, if they
were ever true, are only true at the time they were written.
Search engines collect all the documents on the web and have
little understanding of which contain out-of-date informa-
tion. Some of these issues can be addressed with custom
programming for the specific type of query at issue (e.g.
adding stock quote programming to the search engine and
checking for ticker symbols) but keyword indexing docu-
ments can provide no general solution.

Another problem may be that the knowledge is conceptua-
lised in a way that is different from the way that it is described
on the web page. For example, if one is trying to locate
bi-monthly magazines with a search engine, one is unlikely to
turn up any examples where they are described as being
published “every two months”. Another example would be
trying to find all hotels within two kilometers of a specific
geographical location. It is extremely unlikely that any
description of the hotel will be expressed in exactly that form
so any keyword searching for this will fail. i.e. Because search
engines don’t generally understand the knowledge within a
document, they cannot infer new knowledge from what is
said.

Another problem with natural language is that keyword
searching is language specific. Automatic translation
between languages is essentially an unsolved problem in
Artificial Intelligence and the state of the art produces very
poor results. As a consequence the web is largely partitioned
by the languages used to write the pages. Someone searching
in (say) Hungarian only truly has access to the knowledge
stored in that part of the web which is written in the same
language.

Even if a document is found that appears to answer the
question, the user may not know how much faith to place in
the veracity of what is asserted. The facts asserted within this
document may be incorrect or out of date. No general scheme
exists on the web for assessing how much confidence can be
placed in the veracity of any information contained in a web
page. The page could contain errors and even the authorship
of'the document may not be clear.

An example of a prior art search-engine interaction illus-
trating some of these problems is shown in FIG. 1. The user
has typed a very simple question about a popular musician in

US 9,098,492 B2

3

the search box (102) and the search engine has responded
with a list of documents (104). The web contains a very strong
bias towards contemporary people, especially celebrities, and
there is no shortage of information on the web which would
allow a perfect system to answer this question. In fact there
are many thousands of web pages with information in them
suitable for answering it. However, the list of documents
bears very little similarity to what is being asked and the user
would have to experiment further and read through a number
of documents to get an answer.

The disadvantages of keyword searching are even more
extreme when the user is not human but rather an automated
system such as another computer. The software within a web-
site or other automated system needs the knowledge it
requires for its processing in a form it can process. In almost
all cases, documents found with keyword searching are not
sufficiently processable to provide what is needed. As a con-
sequence almost all the world’s computer systems have all the
knowledge they need stored in a local database in a local
format. For example, automated scheduling systems wanting
to know whether a particular date is a national holiday access
a custom written routine to provide this information, they do
not simply consult the interne to find out the answer.

Knowledge in structured form is knowledge stored in a
form designed to be directly processable to a computer. It is
designed to be read and processed automatically. Structured
form means that it is not stored as natural language. It is
knowledge stored in a pre-determined format readable and
processable by the computer. Knowledge in structured form
will include identifiers which denote objects in the real world
and examples will include assertions of information about
these identified objects. An example of such an assertion
would be the assertion that an identified relationship exists
between two or more identified objects or that a named
attribute applies to an identified object. (Individual instances
of structured knowledge are referred to herein as “facts”.)

To fully understand the potential advantages of embodi-
ments of the present invention it is also important to under-
stand some issues relating to the broadness or narrowness of
the domain of knowledge being represented. Knowledge
stored in (say) a company’s employee relational database
may be in structured form but is in an extremely narrow
domain. The representation is entirely local and only meets
the needs of the narrow computer application which accesses
it. Typically data stored in a computer system is designed to
be used by, and can only be fully exploited by, the software
within that system. In contrast, general knowledge is knowl-
edge falling within an extremely wide domain. General
knowledge stored in structured form represents general
knowledge in such a way that it combines at least some of the
universal meaningfulness advantages of natural language
with the machine-processing advantages of other computer
data. However, there are very significant difficulties to over-
come to achieve this.

General knowledge in structured form has a variety of uses
by a computer, including direct answering of natural lan-
guage questions, and assistance with other forms of natural
language processing (such as mining data from documents).
It can even assist with keyword searching. For example, with
the example above, if the structural knowledge exists that the
strings “Abe Lincoln” and “President Abraham Lincoln” both
denote the same unique entity a search engine using such a
knowledge base could return documents containing either
term when only one was entered by the user.

Building a large database of general structured knowledge
presents serious difficulties. There are considerable difficul-
ties in designing a knowledge representation method that is

10

15

20

25

30

35

40

45

50

55

60

65

4

sufficiently expressive to represent a wide range of knowl-
edge yet also sufficiently elementary in form to allow effec-
tive automated processing (such as inference and query
responses). Building a knowledge base by hand (i.e. using
direct human interaction as the source of the knowledge) is
slow, so to build the largest possible knowledge base in a
reasonable time requires a large number of people contribut-
ing.

One way to enable people to contribute is to select, hire and
train salaried staft and then pay them to add this knowledge.
Training them would typically require educating them about
the underlying knowledge representation syntax and teaching
them about what is already in the knowledge base.

However, to open up the process to the largest number of
people (such as general users of the internet) requires
enabling access to at least some of the knowledge addition
process to untrained users.

Enabling untrained users to add general knowledge in
structured form to a knowledge base presents a number of
very significant problems.

First, these users are unlikely to know anything of the
underlying knowledge representation technology so if
untrained users are genuinely to be used, they will ideally
need to be able to assert facts in a way that is natural to them
and distinct from the knowledge representation format.

Secondly, these users are untrusted and potentially mali-
cious. For this reason it isn’t desirable to simply permanently
add all knowledge asserted by such users to the published
knowledge base. Desirably methods are needed to distinguish
between true and untrue facts and to retain true facts while
removing (or never publishing) untrue facts.

Thirdly, adding knowledge should desirably not require
any previous knowledge of what is already in the knowledge
base. If prior familiarity with the ontology or other facts that
are already in the knowledge base is required, untrained users
will find it more difficult to add knowledge.

All ofthe above issues both with knowledge representation
generally and with the knowledge addition process are
directly addressed in various embodiments of the present
invention.

1.3 SUMMARY

Embodiments of the present invention may be considered
as internet-based knowledge repositories of general knowl-
edge, stored in structured form, to which anyone may add.
Various embodiments include a static knowledge base of
general knowledge stored in structured form in one or more
persistent computer-accessible stores. The knowledge is rep-
resented within the static knowledge base using a structured
knowledge representation method.

According to specific embodiments of the invention, a
knowledge representation system is provided which includes
a data store having a knowledge base stored therein compris-
ing first knowledge represented in a structured, machine-
readable format which encodes meaning. The system also
includes at least one computing device operable to add second
knowledge to the knowledge base. The second knowledge is
generated with reference to input from a plurality of users
which is not in the structured, machine-readable format. At
least some of the input from the users is in a natural language.
The at least one computing device is further operable to
generate third knowledge not represented in the knowledge
base by inferring the third knowledge from at least one of the
first knowledge and the second knowledge. The at least one
computing device is further operable to respond to queries

US 9,098,492 B2

5

using at least one of the first knowledge, the second knowl-
edge, and the third knowledge.

According other specific embodiments, methods and appa-
ratus are provided for facilitating addition to a knowledge
base. The knowledge base includes first knowledge repre-
sented in a structured, machine-readable format which
encodes meaning. At least one interface is provided by which
a first user may enter information which is not in the struc-
tured, machine-readable format. At least some of the infor-
mation is in a natural language. The at least one interface is
operable to transmit the information to at least one remote
computing device for generation of second knowledge repre-
sented in the machine-readable format for addition to the
knowledge base. Responses to knowledge requests are pre-
sented using at least one of the first knowledge, the second
knowledge, and third knowledge not represented in the
knowledge base and inferred from at least one of the first
knowledge and the second knowledge.

According to yet other specific embodiments, a computing
system in a network is provided. The system includes a
knowledge repository which includes first knowledge repre-
sented in a structured, machine-readable format operable to
store information about any entity that can be denoted in a
natural language. The system further includes at least one
computing device operable to facilitate addition of second
knowledge to the knowledge repository by collecting input
from a plurality of users via the network using natural lan-
guage requests, and translating the input to the machine-
readable format.

According to further specific embodiments, a computing
system in a network is provided. The system includes a
knowledge repository which includes first knowledge repre-
sented in a structured, machine-readable format operable to
store information about any entity that can be denoted in a
natural language. The system further includes at least one
computing device operable to facilitate addition of second
knowledge to the knowledge repository by a plurality ofusers
without requiring knowledge of the machine-readable format
by the users.

According to additional embodiments, methods and appa-
ratus are provided for responding to knowledge requests. A
first natural language response to a first knowledge request is
presented. The first natural language response is derived from
knowledge represented in a structured, machine-readable for-
mat operable to store information about any entity that can be
denoted in a natural language. Search results are presented in
response to a second knowledge request where a second
natural language response derived from the knowledge is not
available. The search results include a plurality of natural
language documents identified using a conventional search
engine

According to other additional embodiments, methods and
apparatus are provided for responding to a knowledge
request. A natural language response to the knowledge
request is presented. The natural language response is derived
from knowledge represented in a structured, machine-read-
able format operable to store information about any entity that
can be denoted in a natural language. Search results are pre-
sented in conjunction with the natural language response. The
search results include a plurality of natural language docu-
ments retrieved using a conventional search engine.

According to yet further embodiments, methods and appa-
ratus are provided for facilitating addition of a first entity to a
knowledge base by a first human user. Identification by the
first human user of a class to which the first entity belongs is
facilitated. Generation by the first human user of at least one
first natural language string denoting the first entity is facili-

10

15

20

25

30

35

40

45

50

55

60

65

6

tated. Generation by the first human user of at least one
second natural language string corresponding to the first
entity is facilitated. The at least one second natural language
string is specified to facilitate unique recognition of the first
entity by humans. Transmission is facilitated of data repre-
senting the class and the first and second natural language
strings for storage in a knowledge base in association with an
identifier uniquely identifying the first entity within the
knowledge base. According to one such embodiment, at least
one third natural language string is presented to the first
human uvser. The at least one third natural language string
corresponds to a second entity represented in the knowledge
base and is specified to facilitate unique recognition of the
second entity by humans. Verification by the first human user
that the first entity is distinct from the second entity is facili-
tated with reference to the at least one third natural language
string.

A further understanding of the nature and advantages of
embodiments of the present invention may be realized by
reference to the remaining portions of the specification and
the drawings.

1.4 BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 gives an example of a prior art search with a search-
engine. A question has been turned into a list of documents
based on them containing similar words.

FIG. 2 shows an embodiment of the present invention
“plugged into” the same search engine and responding to the
same question using structured knowledge. A perfect answer
is provided to the user and the list of documents is relegated to
serving as supplementary information.

FIG. 3 illustrates components in the preferred embodiment
of the invention.

FIG. 4 shows a method for answering a query with “no”
instead of “unknown”

FIG. 5 shows how knowledge about the completeness of
the results returned can be given in query processing.

FIG. 6 shows how queries are processed in one embodi-
ment.

FIG. 7 shows a question answered with multiple answers
and completeness information provided.

FIG. 8 shows a question answered with both a concise and
a detailed explanation.

FIG. 9 shows a method for translating a question or fact
assertion from natural language into internal form.

FIG. 10 shows a method for eliminating improbable can-
didate translations using semantic constraint knowledge.

FIG. 11 shows how multiple translation candidates are
dealt with more generally.

FIG. 12 shows two example questions with ambiguity
being dealt with.

FIG. 13 illustrates the profile system with four different
profiles being given for the same entity.

FIG. 14 illustrates the profile showing system specific data.

FIG. 15 shows a method for selecting a default profile
template for a given object.

FIG. 16 shows a method for turning a profile template and
object into a profile.

FIG. 17 shows part of a profile template being processed.

FIG. 18 shows part of a profile template containing iterator
nodes being processed.

FIG. 19 shows a method of authenticating a user using their
real world identity.

FIG. 20 shows a method of selecting an object.

FIG. 21 shows a method of allowing a user to add a new
(non class, non relation) object.

US 9,098,492 B2

7

FIG. 22 illustrates an exemplary interaction with a user
adding a new object.

FIG. 23 is a continuation of FIG. 22.

FIG. 24 shows a method of allowing a user to add a new
class.

FIG. 25 illustrates an exemplary interaction with a user
adding a new class.

FIG. 26 is a continuation of FIG. 26.

FIG. 27 shows a method of allowing a user to add a new
relation.

FIG. 28 illustrates an exemplary interaction with a user
adding a new relation.

FIG. 29 is a continuation of FIG. 28.

FIG. 30 is a continuation of FIG. 29.

FIG. 31 is a continuation of FIG. 30.

FIG. 32 shows a method of dealing with a sequence of facts
collected for assertion by a process.

FIG. 33 shows a method of collecting denotational strings
for a new object.

FIG. 34 shows a method of allowing a user to add a new fact
to the static knowledge base.

FIG. 35 illustrates a user adding a new fact where all but
one element has been pre-specified.

FIG. 36 shows a method for collecting essential facts from
a user about a newly added object.

FIG. 37 shows a method for collecting temporal data from
a user pertaining to a transient fact.

FIG. 38 shows a method for collecting source information
about a fact from a user.

FIG. 39 shows a method usable in the user assessment
subsystem for collecting endorsements or contradictions of a
fact from a user.

FIG. 40 shows a method usable in the system assessment
subsystem for automatically calculating various types of state
information about a fact.

FIG. 41 illustrates an exemplary interaction with a user
where user assessment and system assessment methods allow
an incorrect fact to be removed from the static knowledge
base and the correct version to be published.

FIG. 42 illustrates an exemplary interaction with a user
where the user’s attempts to abusively assert knowledge are
thwarted by two different abuse prevention techniques.

FIG. 43 shows a method of utilising a prior art search
engine in combination with an embodiment of the current
invention to process a user search query.

FIG. 44 shows a method of enhancing a user search query
using knowledge obtainable from an embodiment of the
present invention.

2 DETAILED DESCRIPTION

Reference will now be made in detail to specific embodi-
ments of the invention including the best modes contemplated
by the inventors for carrying out the invention. Examples of
these specific embodiments are illustrated in the accompany-
ing drawings. While the invention is described in conjunction
with these specific embodiments, it will be understood that it
is not intended to limit the invention to the described embodi-
ments. On the contrary, it is intended to cover alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the invention as defined by the appended
claims. In the following description, specific details are set
forth in order to provide a thorough understanding of the
present invention. The present invention may be practiced
without some or all of these specific details. In addition, well
known features may not have been described in detail to avoid
unnecessarily obscuring the invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

The structured knowledge representation employed by
specific embodiments of the invention uses primarily a col-
lection of assertions of named relationships between pairs of
named entities. Each assertion (also referred to herein as a
“fact”) is also a named entity and temporal data about when a
fact is true can be asserted using similar assertions. The pre-
ferred embodiment supports “negative facts™: assertions of a
relationship not being true and “parametered objects” where
entities are identified by a combination of a class with one or
more other named entities. There is also a strong emphasis on
natural language facts associating strings with each object via
a relationship whose semantics corresponds to a natural lan-
guage concept. These facts facilitate human interaction with
an embodiment of the invention.

The structured knowledge representation described herein
is advantageous in that it allows representation of knowledge
of'an extremely broad class. That is, it is operable to represent
any entity (including binary relationship and attributes)
which can be denoted in natural language, i.e., if you can give
it a name you can add it to the knowledge base with a unique
recognition string which gives that entity meaning to humans.
The structured knowledge representation is also operable to
represent the presence or absence of any relationship between
two or more such entities, and whether or not a particular
attribute applies to a specific entity. The structured knowledge
representation is also operable to represent points in time
when these relationships are valid.

By contrast, in the typical hard-coded, database-driven
application, the information represented and manipulated is
of an extremely narrow domain. For such applications the
developer typically creates a schema of database tables to
store the entities and the relationships between entities that
the application needs. The developer then hard-codes a pro-
gram that manipulates the data in these tables, e.g., using
SQL.

The knowledge domain associated with such applications
is extremely narrow because nothing that happens after the
application is launched ever extends this schema beyond the
scope for which it was originally designed. Users may add
data to the tables, but they can never extend what can be
represented or what kinds of queries can be made.

By contrast, and as will be described, knowledge represen-
tation systems enabled by the present invention can enable
users to almost arbitrarily extend the scope of the knowledge
being represented. In fact, the scope of knowledge repre-
sented may be extended every time a new class, attribute or
relationship is added.

According to specific embodiments of the invention, que-
ries and query answering are also supported. Queries are a
machine-readable analog to a question or knowledge request
designed to elicit knowledge from the system. In the preferred
embodiment, the query answering system can answer queries
with a list of objects that match the query and can answer
“truth queries” (the query analog to a yes/no question) with
“yes”, “no” and “unknown” responses. In some cases “com-
pleteness information” (whether the list of responses contains
all the possible responses) can be provided when the query
requests a list of entities.

As there are far more facts than can be stored statically, the
preferred embodiment also supports knowledge generation.
Knowledge generation enables facts to be generated by the
system which are not present in the static knowledge base.
This can be achieved by inference from the facts in the static
knowledge base. The knowledge generation system can also
generate facts sourced from a third-party database or dynamic
source such as (for example) financial information.

US 9,098,492 B2

9

Knowledge generation is implemented in the preferred
embodiment via a collection of “generators” which comprise
a pattern of the facts which they can generate in combination
with one or more mechanisms to generate facts which match
this pattern. Some generators achieve this by providing a
query linked to the pattern which if answered provides values
for unknowns in the pattern thus enabling the generation of
the facts (“dumb generators”). Other generators use some
executable code possibly in combination with a query to
generate facts matching the pattern (“smart generators”™).
Smart generators can be used to generate facts sourced from
an external source or database by accessing this external
source and converting the knowledge so retrieved into facts
matching its pattern. Smart generators can also be used to do
inference where at least one calculation step is needed to
generate the new facts.

Various embodiments also support the creation of detailed
natural language explanations of how a query was answered.
The preferred embodiment additionally supports a sum-
marised concise explanation showing only the facts in the
static knowledge base (or an essential subset thereof) that
were used to respond to the query.

The preferred embodiment also supports question transla-
tion. This is the capability to translate natural language ques-
tions or knowledge requests provided by a user into a query.
In combination with the query answering system this enables
internet users to type a natural language question directly into
the system and obtain an answer directly. Various embodi-
ments also support ambiguity resolution by elimination of
improbable interpretations of the question.

Various embodiments also support the retranslation of a
query back into unambiguous natural language. In combina-
tion with the question translation system, this enables the user
to have confidence that their question has been correctly
understood. If the question translation system determines that
the user’s question is ambiguous it also enables it to present
the list of interpretations of their question for selection of the
user’s intended query.

In addition to use by human users, various embodiments
also support use by remote automated systems. In the pre-
ferred embodiment a number of services are provided includ-
ing responding to queries. As the queries and response are in
structured form, this service can be of genuine use by aremote
non-human user in a way that a traditional document-return-
ing search-engine cannot.

Knowledge addition in the preferred embodiment is
achieved by a number of “processes” which interact with
general internet users via a sequence of web pages containing
prompts, text input boxes and buttons. These processes
receive, check and refine the answers provided by users and
include confirmation pages. Processes can also call other
processes as sub-processes (which can in turn call additional
processes etc.) creating intervening additional sequences of
pages within the parent process. For example, when a user
adds a new entity to the knowledge base and asserts that this
entity belong to a class which is also not in the knowledge
base, the process for adding the class can be immediately
implemented returning the user to the initial process (with the
class so added) when it is finished. The calling parent process
receives the class name exactly as if it was an existing class
which had been selected by the user.

In the preferred embodiment the knowledge addition sys-
tem comprises processes for adding new classes, new rela-
tions and new entities of other types.

Users can also assert new facts which in the preferred
embodiment are assertions of a named relationship between
two entities and any associated temporal information.

10

15

20

25

30

35

40

45

50

55

60

65

10

The preferred embodiment also has support for natural
language translation of facts asserted by users whereby a
natural language sentence can be translated into a combina-
tion of one or more facts using a method similar to the trans-
lation of questions and, after confirmation, this knowledge
added to the static knowledge base. Prompting for the two
objects and the named relationship individually is used as a
fall-back if the entire assertion cannot be understood.

Various embodiments also support “user assessment”
where users can endorse or contradict facts in the static
knowledge base and these assessments are used to remove or
hide untrue facts. In the preferred embodiment links to
endorse or contradict a fact are provided next to facts in the
static knowledge base displayed to the user. For example, this
occurs when presenting the summary explanation generated
in response to a question or knowledge request provided by a
user. When a great deal of confidence has been gained in the
veracity of a fact the preferred embodiment ceases to accept
user assessment on it.

In the preferred embodiment users can authenticate them-
selves with the id of class [human being] that corresponds to
their real identity. The preferred embodiment additionally
contains mechanisms for users to establish that they have not
appropriated the identity of someone other than themselves.
In the preferred embodiment, knowledge addition and user
assessment are associated with the user’s true identity as the
reporter, thereby giving a clear record of the provenance of
the knowledge.

Various embodiments also contain a “system assessment”
component operable to assess the veracity of facts based at
least on their semantic interaction with other facts in the
knowledge base. In the preferred embodiment facts can be
labelled as “contradicted” (in semantic conflict with other
facts in the static knowledge base) and “superfluous” (be-
lieved true but which can already be generated by the system).
System assessment is done on all newly added facts to the
static knowledge base and the user who has added a fact that
is contradicted by other facts in the static knowledge base is
given an opportunity to use user assessment to draw attention
to and potentially change the status of any of those facts
which they believe to be untrue. In the preferred embodiment,
system assessment can be used to resuscitate facts previously
thought to be untrue when for example, one or all of the facts
in conflict with the newly added fact is later reassessed (via
user assessment or otherwise) as untrue. Other embodiments
may use system assessment to prevent untrue facts from being
added to the system at all.

Various embodiments also support additional mechanisms
for preventing the addition of untrue facts by mistaken or
abusive users including the ability to block certain patterns of
facts from being added and ranking of users based on their
track record of adding highly quality knowledge. More trust
is associated with the users of higher rank, more weight given
to the facts they assert and more weight to their user assess-
ments resulting in a higher probability of publication.

Various embodiments also support the generation of “pro-
files” giving general information about a particular entity
based on its class and the knowledge about that entity in the
system. This is implemented in the preferred embodiment via
a collection of profile templates which define the contents of
an information screen and what queries need to be run to
populate it. The preferred embodiment supports one or more
different profiles being supported for a particular class giving
a different emphasis to the object being profiled. It is also
possible to navigate through the classes that an object is a
member of, giving a profile tailored to that class for the same
entity. In the preferred embodiment, where information is

US 9,098,492 B2

11

missing on a profile, links can be provided enabling a user to
add the missing knowledge with only the missing knowledge
being prompted for.

As the underlying representation of knowledge is in a form
separate from natural language, various embodiments sup-
port user interactions with the system via multiple natural
languages and with the users using different natural lan-
guages sharing access to at least some of the structured
knowledge.

Various embodiments also comprise a search-engine com-
ponent operable to produce a list of documents (e.g. web
pages) ordered by relevance to a query entered by a user. This
component can be used to produce results in addition to the
normal response to a user’s question or as a fall-back when
the question has not been successfully translated or the sys-
tem cannot respond to the query.

In a related embodiment the present invention is imple-
mented as a “plug-in” to a pre-existing search engine. The
search-engine query entered by the user is processed by both
the search-engine to produce a list of documents and by this
embodiment to possibly produce a result originating from the
structured-knowledge source. A successful response from the
plug-in is presented above the search-engine results. I[f unsuc-
cessful, the standard search-engine output is presented to the
user and the user is no worse off than they would have been
without the plug-in.

A user interaction with this plug-in embodiment is illus-
trated in FIG. 2. The user question or knowledge request
(202) has been passed both through the search-engine search
to produce a list of documents and additionally through an
embodiment of this invention. The question translation com-
ponent has received the user question and produced a query.
The query answering system has then processed this query
using knowledge generation and references to structured
knowledge facts in the static knowledge base, producing an
answer which is translated back into natural language for
presentation to the user (204). The query answering system
has also produced a concise explanation for the answer by
presenting the facts in the static knowledge base which were
used to answer this query (206). (The needed generated facts
are not shown.) One of the facts used to answer the question
can be confirmed or contradicted by the user (207) via the user
assessment system. A detailed explanation including the gen-
erated facts and the steps taken to generate them was also
produced, accessibleto the user via alink (212). This embodi-
ment has also retranslated the query back into unambiguous
natural language to demonstrate that the user’s question has
been understood (208). The prior art list of web pages is still
produced but has now been relegated to supplementary infor-
mation (210).

The following sections describe in detail how embodi-
ments of the present invention work. It should be noted that
many of the choices made in describing the preferred embodi-
ment are fairly arbitrary, including, for example, the choice of
ontology, the syntax, and the names given to the classes and
objects used as examples. A variety of different choices will
be obvious from the principles described herein.

Moreover, much of the description of the processing of the
English language is adaptable to other specific languages and
thus the description should not be taken as limiting the choice
of natural language to English. Indeed, as the underlying
knowledge is represented in a form separate from natural
language, supporting multiple natural languages on the same
system is a desirable feature of various embodiments. (See
section 2.6.5 for more on this.)

Another rich source of additional embodiments is the pre-
cise way that the various processes and components have

20

40

45

50

65

12

been subdivided. The subdivision of a complex system is
sound engineering practice and enables reuse of the compo-
nents and clearer thinking about the high level method. How-
ever, different ways of dividing what is described will be
obvious.

As the interne is where the primary commercial opportu-
nities for the present invention are currently believed to lie, all
the examples contained herein assume an internet-based
embodiment. However, what is described is readily adaptable
to operate on other computer networks and example internet-
based embodiments should not be read as precluding other
forms of network. For example, an embodiment based on a
mobile phone network where the client machines are user
handsets should be readily apparent to anyone reading this
description.

Similarly, all the examples contained herein show a web-
based interaction with users. Again, what is described is
readily adaptable to other forms of user-interface/user inter-
action. For example, the interaction with users could be
implemented using a largely text-based exchange of com-
mands and responses.

Many further choices for implementing much of the tech-
nology are available, and many different embodiments will be
obvious to anyone of ordinary skill in the art who has read
what follows. Any specifics described should not be inter-
preted as limiting the generality of what is claimed.

2.1 Components

FIG. 3 shows some of the components in the preferred
embodiment. (Many of these components are optional and
simply add to the overall functionality/utility of the system.
They may not be present in other embodiments.)

One or more client computers (302) with a human user
(303) can access the system via a web-interface (310) on at
least one server (308).

Additionally, one or more remote computers making auto-
mated queries (306) can access the system via a remote com-
puter interface (312). The remote computer interface is
described in section 2.15.

The underlying knowledge is stored in one or more static
knowledge bases (318). The static knowledge base is
described in section 2.2 and the preferred embodiment
knowledge representation method used to represent the
knowledge stored in the static knowledge is described in
section 2.3

Knowledge can be added to the static knowledge base by
users using the knowledge addition subsystem (326). This
component and its subcomponents are described in section
2.9.

Users are also able to correct and endorse added knowledge
via the user assessment component (334). This is described in
section 2.10

The system is also able to analyse and label facts using
system assessment (316). This is described in section 2.11

Natural language translation (324) enables translation
between natural language and internal representations. e.g. It
can translate a natural language question into a query and
natural language assertions of knowledge into one or more
corresponding facts. Translation of questions is described in
section 2.6.6, translation of factual assertions is described in
section 2.6.9). Both these components are implemented in the
preferred embodiment by referring to a store of translation
templates (325). These provide a pre-determined pattern for
matching against natural language strings and further data
enabling natural language strings matching the pattern to be
converted to the internal representation.

US 9,098,492 B2

13

Query processing (314) enables the retrieval of knowledge
from the system. Queries may be the output of the natural
language translation system (324) or provided by remote
computers (306). Query processing is described in section 2.5

The knowledge generation subsystem (320) provides facts
which are not present in the static knowledge base often by
inferring new knowledge from the facts that are present in the
static knowledge base. The preferred embodiment uses a
store of generators (322) which describe patterns of fact
which they are capable of generating along with one or more
mechanisms to generate these facts. Such a mechanism canbe
just a query (a dumb generator), or some program code
optionally in combination with a query (a smart generator).
Knowledge generation is described in section 2.4

The profile generation system (330) enables the creation of
a collection of information about a particular object. In the
preferred embodiment this is a web page. In the preferred
embodiment profile generation is achieved by use of a store of
profile templates (332) which specify the knowledge to be
displayed, its format and how to obtain it.

User authentication is achieved via the authentication sub-
system (328). In the preferred embodiment users can authen-
ticate themselves using their real-world identity. This is dis-
cussed in section 2.8.

2.2 The Static Knowledge Base

As used herein, a “static knowledge base” is the term for a
computer-accessible persistent store comprising knowledge
represented in structured form. A persistent store could be a
memory or memories of any type capable of holding the
knowledge long term. For speed, various embodiments may
hold the data in a long term store but temporarily cache itina
fast non-persistent memory such as RAM for access by other
components of the system.

In the preferred embodiment the static knowledge base is a
collection of facts represented using the knowledge represen-
tation method of the preferred embodiment described below,
stored in one or more relational databases on one or more
server computers.

2.3 Knowledge Representation

Knowledge representation is the methodology by which
knowledge in structured form is represented within at least
the static knowledge base.

Methods of representing knowledge in structured form
include:

(a) Semantic nets (graph-like representations where the nodes
correspond to objects and the edges to relationships);

(b) Logic, a machine-readable mathematical language of pre-
determined syntax used to represent the knowledge. Logics
are substantially simpler and more rigorously defined than
natural language. Types of logic include predicate logic
and propositional logic.

(c) Frames. Frames represent objects as a set of slots (at-
tributes) and associated values.

Embodiments of the current invention can contain a static
knowledge base containing facts using at least one alternative
structured knowledge representation. However, the preferred
embodiment uses primarily a combination of simple asser-
tions asserting a named relationship between two objects to
represent knowledge. The relation can be negative and certain
objects can comprise one or more further objects (“param-
etered objects™). Each fact is also an object allowing facts to
make assertions about other facts.

10

15

20

25

30

35

40

45

50

55

60

65

14

A detailed description of the knowledge representation
used in the preferred embodiment is now disclosed:
2.3.1 Objects

Objects are individual entities. They can include physical
objects in the real world (individual people, places, buildings
etc.), conceptual objects (numbers, organisations etc.),
attributes, quantities, classes etc.

All identified objects have a unique id within the system.
This name must be unique to identify the object and in the
preferred embodiment should correspond to a common, yet
fairly specific natural language noun or noun phrase for the
same object (for relations, see section 2.3.3, a present tense
central form is used). Instances are usually given the proper
name for the object if there is one. If the proper name is not
unique then a noun phrase is used including the proper name.
In the preferred embodiment these names can include spaces
making them very close to natural language.

As alast resort, in some embodiments, one can distinguish
between objects that would otherwise have been assigned the
same name, by adding an integer at the end (after a space). If
the integer is missed off it is assumed to be 1 so new objects
which clash with existing objects start their numbering with
2. For example:

e.g. [california] is the object name for the US state of Cali-
fornia. [william jefferson clinton] is the object name for the
former US president.

Note how the names are written in square brackets in the
preferred embodiment. This identifies the thing as an id and
also means that such names are recognizable as being part of
the preferred embodiment of the present invention, even
when written out in some context where what it is would not
otherwise be obvious. For example, a person could print their
id in square brackets on business cards and their name would
be readable both as a natural language name and recognisable
as an id for the embodiments of present invention. People
with the business card could then use the id to find out more
information about the holder.
2.3.1.1 String Objects

Generally the above syntax is unrelated to the ontology
used or the class of the object. One exception in the preferred
embodiment is the class of strings (sequences of characters).
Instances of this class are simply the string itself put in quotes,
e.g. [“William”] is the name for the sequence of characters
WL L L2 L L ‘m’—it means nothing
more than that. Such objects are useful for stating information
used for translation and for parametered objects.

One common use of strings is to indicate denotational
strings. As used herein denotational strings are strings which
are used in natural language to denote an object in the system.
For example, the strings “Abe Lincoln”, “Abraham Lincoln”
and “President Lincoln” are denotational strings for former
US president Abraham Lincoln; “green” is a denotational
string for the attribute green, etc. Denotational strings can
also denote objects of all types including relations, classes
etc.
2.3.1.2 Parametered Objects

Some classes contain an infinite (or extremely large) num-
ber of objects that can be consistently understood in some
way. We can choose to denote such objects by a combination
of'the class name and data. The syntax of a parametered object
in the preferred embodiment is:

[<class name>: [object 1]; [object 2]; . . . ; [abject n]]

Parametered objects have at least one object within the
name as a parameter. The number of parameters can be fixed
for a particular class, e.g. timepoint (a moment in time), or
vary, e.g. group (a collection of objects regarded as a single
object).

US 9,098,492 B2

15

For some objects, strings containing the important infor-
mation are used as the parameter or parameters. This is espe-
cially useful where there is already a well-established “real-
world” syntax for members of the class. A simple example is
the class of integers, e.g. [integer: [“8128”]]. Integers already
have a universal syntax and meaning using the digits 0-9 in
sequence and the decimal system. It is thus desirable to
denote them using a single string object as the parameter. A
more complicated but equally valid example is a chess posi-
tion where a standard way of denoting it as strings (and
including all the other information such as the side to move
and castling rights) has already been established, e.g. [chess
position: [“R7/5p1p/5Kp1/8/k6P/p1r5/2P5/8 b - -]].

Another common class of parametered objects used in the
preferred embodiment is the timepoint class. Here a single
string object is used with a format that is not widely used. It is
a sequence of integers separated by “/”” characters, denoting
(in order), the year, the month, the day, the hour in 24-hour
clock, the minute, and the second. Any further integers are
tenths, hundredths, thousandths of seconds, etc., e.g.
[timepoint: [“1999/6/3/15/0]] is 3 pm on the 3rd of June

1999 UTC. The accuracy of this timepoint is within one

minute. [timepoint: [“1999]] specifies a “moment” of

time but the accuracy is one year.

Parametered objects are compared by comparing each
parameter in turn. If the nature of the class means that order is
unimportant (e.g. group) the parameters need to be consid-
ered in a pre-determined order (e.g. alphabetical) so that the
same objects will be compared as equal.

In the preferred embodiment, parametered objects can also
have other parametered objects as parameters. This nested
nature of parametered objects can be extended indefinitely
deeply. For example, we could define a class “pair” specifi-
cally for objects consisting of exactly two things, e.g. [pair:
[integer: [“5”]; [integer: [“7”’]] and having done so there is no
reason why we could not create a name for the object con-
sisting of the group of' this object and other things, e.g. [group:
[pair: [integer: [“5”]; [integer: [“7”]]; [abraham lincoln]] is
the object which involves considering the pair (5,7) and Abra-
ham Lincoln as a single thing.

2.3.2 Unique Recognition Data

As used herein unique recognition data is data associated
with an object which has the following properties:

It should be perceivable by human users of the system.

It should uniquely distinguish the object from others which
might be mistaken for it by the users of the system (e.g.
other objects with similar names).

It should be generally appreciable. i.e. enough of the data
should have meaning to uniquely distinguish the object
to all users (or almost all users) who may wish to com-
municate with the embodiment about the object.

For example, someone’s name plus their social security
number would be perceivable (people can read names and
social security numbers). It would also uniquely distinguish
that person from all other people (social security numbers are
unique). However, it would not be generally appreciable in
most circumstances if that person’s name was common as
most people do not know other people’s social security num-
bers. As it is not generally appreciable, it would not count as
unique recognition data. However, the name of a person, a
collection of common details about them and a photograph
probably would count, as most people wishing to identify that
person are likely to be able to pick out enough detail from the
datato uniquely identify that person from anyone else it might
be, even if some of the data was not known to them.

10

15

20

25

30

35

40

45

50

55

60

65

16

2.3.2.1 Unique Recognition Strings

A unique recognition string is unique recognition data
coded as a sequence of printable characters, readable and
understandable by a human user.

In the preferred embodiment, objects are associated with a
unique recognition string. This association is done with a
simple fact using the relation [uniquely translates as] (see
section 2.3.6 for how facts are asserted). This fact might be
generated (see section 2.4).

The purpose of this string is to both uniquely distinguish
the object from all other objects which may have similar
names and to do so in a manner which allows this to happen
in the minds of all (or almost all) the human users who may
see this string and who have some familiarity with the object.

For a person who is very famous for one thing, such a string
can often be formed by simply saying their name and this
famous thing. For example, for [william jefferson clinton],
“Bill Clinton, the 43rd President of the United States” would
be sufficient as it is extremely unlikely that anyone trying to
reference that individual would fail to know that he was once
US president. However, for an individual who is less famous
several pieces of information may need to be combined so
that different groups of people have enough information to be
sure that they are the person being referred to (the “generally
appreciated” requirement). For example, “James R. Mac-
Donald, software developer, date of birth 3rd of April 1975,
resident in Cambridge England and employed by Ficton
Engineering [.td” may be sufficient for a non-famous person
as even people who not very familiar with that individual will
probably see enough of what they know to make an identifi-
cation.
2.3.2.2 Images

In some embodiments, an identifying image may be part of
the unique recognition data. In cases where everyone who
wishes to communicate about the object has seen it (or knows
what it looks like), it may be the only unique recognition data.
2.3.2.3 Collection of Stored Facts

Other embodiments may use a collection of stored knowl-
edge about the object together as unique recognition data.
Embodiments can offer this via a profile of the object (see
section 2.7). For example, an embodiment could display the
id for the object linked to a profile for the object. If the user
didn’t recognise the id, they could click on the link to see the
profile and use this information collected together to recog-
nise the object.

2.3.3 Relations

Relations are things which link together objects. The pre-
ferred embodiment uses relationships between two objects.
Relationships can exist between physical objects and also
between physical objects and non-physical objects (con-
cepts), e.g. “John is married to Sarah” is a natural language
assertion about a relationship between two physical objects
(in this case people). “The apple is green” asserts a relation-
ship between the attribute “green” with the instance of apple
being talked about. “The book is about Albert Einstein’s
career” asserts a relationship between a book and the concept
of Albert Einstein’s work history. “The soup tastes salty”
asserts a relationship between the attribute “salty” with the
soup. All of these natural language assertions also contain
information about time (tense): this will be dealt with below.

In the preferred embodiment, relationships are also
objects. For example:

[is married to] is the object (relation) that corresponds to the

Western concept of marriage between a man and woman,

i.e. a formalised monogamous marriage.

US 9,098,492 B2

17

[is an instance of] relates an instance object to a class object,
e.g. the relationship between Albert Einstein and the class
[human being].

[applies to] relates an attribute object to another object, i.e. it
says that a certain property applies to something. This
second object can be anything: an instance, a class, a rela-
tion or even another attribute.

[is a subclass of] relates one class to another and says that the
first class is a more specific class than the second and that
all objects that are members of the first class are also
members of the second. For example, this relationship
applies between the class [apple] and the class [fruit].

In the preferred embodiment, relations are typically named
by finding a present tense verb phrase that unambiguously
describes the relationship.

2.3.4 Classes
In the preferred embodiment all objects are members of at

least one class. Classes define objects with similar character-

istics. Class information is thus useful for generation and
profile screens (see section 2.7). An object is related to a class
of which it is a member by the [is an instance of] relation.
2.3.4.1 Class Structure

Classes are related by the relation [is a subclass of], so if B
is a subclass of A then all objects which are members of B are
also members of A. For example all members of [human
being] are members of [living thing] because [human being]
is a subclass of [living thing].

According to various embodiments, classes can also par-
tially overlap. For example, a class could be defined of male
living things which would be a subclass of [living thing] with
the attribute [male]. However, members would include male
human beings as well as male animals while female human
beings would be excluded. Another example would be the
class of (say) [blonde person| and [woman]. Classes with no
member in common have the relation [is a distinct class from|

As there is a class of [object] in the preferred embodiment
which includes everything, the classes in the knowledge base
can be considered a tree with the [object] class as the root.
2.3.4.2 Permanent Classes

A permanent class is one where membership by an object
cannot change as time goes by. The object is a member of that
class for the entire timeline, i.e. the properties of the class are
s0 core to objects within it, that is reasonable to say that the
object would cease to be that object (i.e. a different identifier
would be needed) if those properties were ever to change. An
example of a permanent class would be [tree]. Any object
which is a tree is always a tree and if something radical were
to be doneto it to make it not a tree, such as cutting it down and
turning it into a table, it is reasonable to think of the new
object as a different object with a different identifier. In this
example, the table would be the successor object to the tree
but it would be represented as a different object in a different
permanent class.

An example of a non-permanent class would be [lawyer]. A
particular lawyer can only be an instance of this class for part
of the time. Prior to qualifying (e.g. during his or her child-
hood) and perhaps after leaving the profession they would not
be a member of the class. However he or she is a member of
the class [human being] for the entire timeline as [human
being] is a permanent class.

It is also helpful to understand the difference between a
permanent class and the presence of a physical object in the
universe for only part of the timeline. In the preferred embodi-
ment an object is considered a member of a permanent class
for the entire timeline even for parts of the timeline where that
object isn’t alive or doesn’t exist. However, an object is con-

10

15

20

25

30

35

40

45

50

55

60

65

18

sidered a member of a non-permanent class only for the time
period when the relevant attributes/class membership
applied.

2.3.4.3 Principal Class

The principal class (PC) is a concept that exists in the
preferred embodiment and various other embodiments.

A PC is a class which is considered the most useful in
instantly identifying what sort of object something is. In
general it should be sufficiently specific a class as to give most
of'the common properties of an object, yet not so specific as
to represent an obscure concept. Examples might include the
class of human beings, nation states, trees, cities.

The PC is useful for quickly stating what an object is in a
way that a human user will understand. In some embodiments
it can be used by the system for identification purposes too.
For example, if several objects have the same name the sys-
tem may use the principal class in combination with the name
to uniquely identify the object to the user.

In some embodiments all objects must have a PC or having
one is strongly encouraged. A class cannot be a PC for some
objects and not others which are members of it (i.c. it is a
property of the class). For this reason when an object is added
to the knowledge base and an assertion is made about a class
of'which the object is a member, there must normally be a PC
on the way up the tree (if the asserted class itself is not
principal). The PC of the object is the lowest (most specific)
principal class of which the object is a member.

One method for finding the principal class of an object is
firstto identify the classes of which the object is a member, i.e.
a query is done looking for objects to which the entity has the
relation [is an instance of]. The resulting class objects are then
ordered using the [is a subclass of] relation and the most
specific class labelled as a principal class is then considered
the PC for the object.

Principal classes are organised so that they are distinct
from any other principal class at the same level in the ontol-
ogy so there are no complications with overlapping (non-
distinct) classes which would prevent identifying a single
principal class for the object.

A similar check is done while adding a new object when
prompting the user entity for a class of which the object is a
member. After prompting the user entity for a class, both this
class and the classes to which this class is on the right in the
relation [is a subclass of] are retrieved from the knowledge
base and again they are ordered. The most specific class
labelled as a PC is taken as the object’s PC. If one is not found
using this method the user entity is prompted for a more
specific class, e.g. the string “policeman” will find [human
being] as the principal class (the class of policemen is a
subclass of the PC [human being]) but “living thing” will
result in the user being prompted to be more specific.
2.3.4.4 Relationship Between Attributes and Classes

In the preferred embodiment classes can also be repre-
sented in terms of attributes. For example, being a member of
the class [human being] can also be thought of as having the
attribute [human]. In this example a single attribute is equiva-
lent to class membership. For some classes more than one
attribute may be equivalent. For others a Boolean equation of
attributes may define class membership.

2.3.5 Data/Document Objects

Some useful objects are essentially data. Examples include
pictures, HTML pages, longer blocks of text or other docu-
ments. It is impractical to name these objects using the data
itself so in the preferred embodiment we give the data an
object name. Having done that the interne already has a well-
established way of retrieving the contents of such a file:
URLs. URLs are named within the invention by using a

US 9,098,492 B2

19

parametered class [url] with a single-string object parameter,
e.g. [url: [“http://www.semscript.com/”]]. The relation [is a
url of] relates the object name for a document to a URL which
contains the document’s data.

2.3.6 Facts

Core to the preferred embodiment knowledge representa-

tion method is the four object fact. The basic syntax is:
[name of fact]: [object 1] [object 2] [object 3]
i.e. four objects listed in order on one line, with a colon after
the first one. A great deal can be achieved without the [name
of fact] object and an alternative embodiment could omit this
extra identifier completely, make it optional or infer it (say)
from an identifier in the database. However, in the preferred
embodiment it is compulsory.

Object 1 and Object 3 can be of any type. Object 2 has to be
arelation. This fact itself is an object with the name [name of
fact]. When asserting knowledge all four objects have to be
names.

In the preferred embodiment, the names of facts are of the
form
[fact.<unique string>@network.machine.name]

The network machine name (e.g. an interne host name)
“owns” the fact and is responsible for its truthfulness and
maintaining it. This has utility for embodiments using a dis-
tributed model of multiple servers, each holding different
facts, other machines would refer to this machine to get infor-
mation about this fact if necessary. An alternative embodi-
ment would associate the machine with the fact but include
the name of the machine separately from the fact name.

Here are some simple examples of facts:

[fact.2143@semscript.com]: [alejandro toledo] [is the president of] [peru]
[fact.1147758@semscript.com]: [male] [applies to] [abraham lincoln]
[fact.10@semscript.com]: [paris] [is the capital of] [france]

Note how facts are essentially strings of text and are thus
easily stored on a computer and communicated over a net-
work between computers.

The other advantage of the fact concept is its lack of com-
plexity. A sequence of four objects with an extremely straight-
forward syntax can be regarded as a permanent atom of
knowledge. An unordered collection of such atoms can com-
municate and permanently store real knowledge without any
of'the problems of natural language. Yet another advantage of
the representation is that facts such as the above can easily be
stored in a standard relational database consisting of four
columns with each field being text. Use of indexes means that
combinations of known and unknown objects can rapidly be
looked up. A further advantage is that as each atom of knowl-
edge has a name, it is very easy to represent facts about facts.
This is typically how time is represented (see section 2.3.7
below) but could also include knowledge about when the fact
was added to the knowledge base, what person or entity added
it or any of a large number of other possible assertions. The
naming also gives a source that “owns” the fact enabling all
sorts of possibilities relating to maintaining and verifying the
fact over a network.

Note also that by placing the relation object in the middle of
the two other objects, the facts “read” like natural language
making it very easily understood by humans.

Knowledge stored in this manner can also be used to
supplement knowledge stored using other strategies.

2.3.7 Time

Natural language generally asserts or implies tense relative
to the present. However, in the preferred embodiment static
knowledge can be stored long term and we express time in

20

30

35

40

45

50

55

60

65

20

absolute terms, i.e. we assert that things are true for periods or
moments of time expressed as a date/time-of-day and not
relative to the moment when they are expressed. i.e. Temporal
data is associated with facts which in the preferred embodi-
ment assert when the facts are true. Alternative methods are
possible but doing this avoids the complexity of having to
adjust the meaning of facts from moment to moment as time
goes by.

In the preferred embodiment most simple facts have no
information about time implied or represented with it. For
example:

[fact.1132040@semscript.com]: [london] [is the capital of]

[united kingdom]
simply asserts that the relation [is the capital of] was/is/will be
true for at least one moment in the time line. It may be true for
all of it, it may have been true only for an instant in 1658.

To get around this problem each fact expressing a relation-
ship that can change can be accompanied by one or more
temporal partners. Temporal partners are facts that reference
other facts and make assertions about when another fact is
valid, i.e. we represent the temporal data about when a fact is
true with one or more further facts.

e.g.

[fact.2143@semscript.com]: [alejandro toledo] [is the president of] [peru]
[fact.2144@semscript.com]: [fact.2143@semscript.com] [applies for
timeperiod] [timeperiod: [timepoint: [“2001/7/287]]; [iafter]]

[fact.2144@semscript.com] makes an assertion about
[fact.2143@semscript.com] namely that Alejandro Toledo
has been the president of Peru from the 28th of July 2001 to
the indefinite future. Note that these two facts by themselves
say nothing about whether or not he was president before that.
(To do that requires a similar pair of facts using the negative
version of the fact for the period before 28th of July 2001. See
section 2.3.8)

Many facts are true for all time and it is often possible to
infer this from attributes of the relation in the fact, e.g. the
relation [is the biological father of] is a permanent relation-
ship: it does not make sense for someone to cease to be
someone’s genetic father or to begin to be one when one was
previously not. This practice of making an assertion without
temporal partners is usually reserved for facts that absolutely
cannot change from moment to moment—if they were true
once they are always true. Generators (see section 2.4) can
then infer the temporal partners (if needed) asserting that they
are true for the whole time line.

In addition to permanent relationships there are also per-
manent attributes. For example, the attributes [young] and
[asleep] are examples of transient attributes. [blood group o]
and [sagittarian| are examples of permanent attributes.
Attributes which apply to a relationship and which are a
consequence of their semantics, such as [symmetric], are
permanent.

A third way of dealing with time is to not bother and for the
knowledge base only to attempt to represent information
about the present (and not store information about things that
were true in the past and not true now). Such an approach
would require updates to the knowledge base when things
change, replacing, removing, or suppressing the facts that are
no longer true. “True-now methodology” is the term used
herein for this approach. Such a fact simply asserts something
about the moment in time when the access of the knowledge
base was made and it is not necessarily true at any other time.
In other words the ability to assert knowledge about the past
is sacrificed in exchange for benefits of convenience and

US 9,098,492 B2

21

efficiency. In the preferred embodiment the attribute [relation
is true-now| labels relations where this methodology is used.
Typically when such relations appear in queries (see section
2.3.13), the queries have no corresponding temporal partner
so no inference is needed. Use of such relations in a query is
equivalent to asking about whether the relationship is true
now without this having to be explicitly stated.

In the preferred embodiment, this method is used for facts
used for translating to and from natural language. The reason
being partly that their use is in translating questions and
statements that happen in the present and thus old versions of
these facts are not very useful, partly because they would
almost never be used and partly because they change very
infrequently. Temporal partners could be included but it
would needlessly complicate the translation process. Another
common situation where this method is (has to be) used is
when querying the system for the current time. A temporal
partner for such a fact would be pointless. (An alternative
approach for translation knowledge is to make such relations
permanent. Although not strictly true, in practice words don’t
change their meaning very frequently and this approach is
practical in a similar way.)

A third situation where true now methodology is used is
when the semantics of the fact are based partly or entirely on
what is in the knowledge base. For example, the relation [is a
direct subclass of] (whether one class is immediately below
another in the ontology) has the attribute [true now relation]
as its meaning is affected by whether an intervening class is
present in the knowledge base. This relation could exist
between two classes and then cease to exist when someone
inserted anew class between them. As it is impractical to keep
track of the dates and times of such events it is simpler just to
use true now methodology in this case.

Another situation is temporal partners asserting a time
period terminating with the [iafter] object. As this can be
closed at any time such an assertion uses true now method-
ology. For example a temporal partner using the object [time-
period: [timepoint: [“1987”]]; [iafter]] asserts the time period
from 1987 until the indefinite future. At some point after the
fact was added to the knowledge base, the fact may cease to be
true. Atthis point the fact ceases to be true and a new assertion
needs to be made with the closing time period being an
absolute time point. (Other embodiments could simply
update the fact rather than asserting a new fact and labelling
the old one as false.)

The [timeperiod] class is a class of parametered objects
where the two descriptive objects are the point in time when
the period of time commenced and the point in time when it
finished. However, to cover infinite or indefinite periods of
time there are three special time point objects in the preferred
embodiment. The first is [iafter] which indicates an unknown
point in the future. It is used for things that are true at the time
they were asserted but which are not guaranteed to remain
true. The second and third are [time zero] and [forever] which
indicate respectively a point in time infinitely long ago and a
point in time in the infinite future. They are used to indicate
infinite periods of time, for example the object [timeperiod:
[time zero]; [forever]] indicates the entire time line and would
be used, for example, in a temporal partner for facts that are
true by definition.

In addition to [time zero] the preferred embodiment has a
special timepoint called [earliest meaningful point]. This is
useful for situation where the user may not know or care about
the timepoint when the relationship started but knows it was
always true for as long as the fact could have been meaning-
ful. In these situations [time zero] may be inaccurate and the
alternative would be to just assert arecent time point when the

10

15

20

25

30

35

40

45

50

55

60

65

22

user was sure the relation was true without saying it wasn’t
true before. An example would be asserting that the English
city of Cambridge is geographically located within the
English county of Cambridgeshire. Neither Cambridge nor
Cambridgeshire have existed for all time but for as long as
they both existed one has been located within the other. [ear-
liest meaningful point] thus saves the user from investigating
what this earliest meaningful date might be.

In summary, within the preferred embodiment, facts are
categorised as either permanent, true-now or transient. Per-
manent facts have one of the forms:

<anything> [is an instance of] <permanent class>

<anything> <permanent relation> <anything>

<permanent attribute> [applies to] <anything>

<anything> [applies for timeperiod] [timeperiod: <fixed start>; <fixed
end>]

True-now facts have one of the forms:

<anything> <true-now relation> <anything>
<true now attribute> [applies to] <anything>
<anything> [applies for timeperiod] [timeperiod: <anything>; [iafter]]

Anything not matching one of the above patterns is con-
sidered transient.
2.3.8 Negative Facts

In the preferred embodiment, it is also possible to assert
that a relationship is not true. In the preferred embodiment
this is done by putting the tilde (“~”) character before the
relation object, e.g.

[fact.3@semscript.com]: [London] ~[is the capital of] [England]
[fact.4@semscript.com]: [fact.3@semscript.com] [applies for timeperiod]
[timeperiod: [time zero]; [timepoint: “1066™]]

These two facts together assert that London was not the
capital of England before some point in 1066.

When storing facts in a relational database, representing
negative facts can be achieved by the addition of a Boolean
field to the table storing the facts—when set true the fact is
negative.

2.3.9 The Golden Rule

The Golden Rule is that a relationship cannot both exist and
not exist between the same pair of objects at the same moment
in time. Contradictions or inconsistencies in knowledge rep-
resented by facts are produced by finding or logically gener-
ating breaches of this rule.

Note that the representation of a timepoint is imprecise no
matter how accurately it is specified. In order to create a
contradiction we have to show that a relationship between the
same pair of objects both existed and did not exist for two
overlapping periods of time implied by the accuracy of the
timepoint. For example the British queen Victoria was both
alive and dead (not alive) in 1901: she was alive in the part of
1901 before her death and dead in the rest of it. If someone
remarries an hour after their divorce goes through they are
married to two different people on the same day but without
being married bigamously. If, however, you can show that
someone was alive for one timeperiod and dead for another
and show that the two time periods overlap, only then have
you found a contradiction.

In the preferred embodiment, this golden rule is used to
answer “no” to yes/no queries. See section 2.5 for details.

US 9,098,492 B2

23

2.3.10 Categories of Knowledge

Various embodiments of the system classify knowledge
into certain categories in order to determine appropriate poli-
cies and actions for facts within these categories. Various
embodiments can analyse a fact to determine (in at least some
cases) which of these categories it falls into and act accord-
ingly (e.g. when assessing the reliability of a fact or the
penalties for it later being contradicted). For example, the
[uniquely translates as] relation is always associated with true
by choice facts.
2.3.10.1 True by Definition

Some facts stem logically from the semantics of the entity
and relationships involved and don’t need any external evi-
dence to support them. For example, saying that the class of
children is a subclass of the class of human beings stems from
the definition of the two classes and the semantics of the [is a
subclass of] relation. Similarly, saying that [symmetric] [ap-
plies to] [is married to] is a true by definition fact (the fact that
A is married to B implies that B is married to A is a conse-
quence of the meaning of the relation).
2.3.10.2 True by Declaration

These are facts that are defined by the fact that a source of
authority says so (and being generally accepted). Example
includes the capital city of a country.
2.3.10.3 True by Choice

These are facts within the knowledge base where different
people could plausibly produce different answers and yet all
be right. However, only one version can be used. A good
example is the unique recognition and common translation
strings for an object. This is similar to true by declaration
except that the source is the user asserting the knowledge
rather than any kind of accepted external authority.
2.3.10.4 True from Evidence

These are facts that don’t stem from definition or declara-
tion but come from observations made by people. The geo-
graphical location of an object and whether a human being is
male or female are examples of this class of knowledge.
2.3.10.5 Unprovable Knowledge

Some knowledge is widely believed and may be asserted
by users of the system but there is no evidence or way of
proving the fact either way. Some facts associated with a
particular religion fall into this category. Legend, mythology
and historical facts with very poor evidence to support them
may also produce facts that have similar issues. This can be
dealt with by use of a context (see section 2.3.10.7 below for
discussion of fictional knowledge). Users can choose to add
contexts including their belief system into knowledge con-
sidered when their queries are answered. For example, mem-
bers of a particular religion could have the id for that context
in the list of contexts to be used when they are interacting with
the system. Once they had authenticated themselves (see
section 2.8) this list would be considered by the engine. The
default list of contexts would just include one, though—the
“base” context. Having a context distinct from “base” does
not imply that the contents are not part of reality (though this
is true with fictional contexts). It implies that they are unprov-
able using the standards of evidence embodied in the policies
of the system and additionally disputed by significant num-
bers of people. It thus makes sense to store these facts sepa-
rately from facts that are likely to be universally accepted.
2.3.10.6 False Yet Believed Facts

Another category is things that are widely believed, yet
also untrue according to the strong preponderance of evi-
dence. Some urban myths would fall into this category. In the
preferred embodiment these are essentially untrue facts that
would be dealt with like other factual knowledge with strict
policies for what is needed before they can be asserted and

10

15

20

25

30

35

40

45

50

55

60

65

24

removed using the same methods by which other knowledge
is removed. In other embodiments special policies may be
needed for knowledge that appeared in this class.

2.3.10.7 Fictional Knowledge

These are “facts” that are true only in the context of a
fictional work. An example would be an assertion of the
address or birth date of Sherlock Holmes.

2.3.11 Contexts

Various embodiments can store and process fictional
knowledge in the knowledge base by clearly labelling all
“true by declaration” and “true from evidence” facts as
belonging to a specific context (e.g. a fictional movie or
novel). This way inappropriate facts can be ignored by the
query processing system unless the query is specifically about
the context requested. When a specific context is part of the
query, all “true by declaration” and “true from evidence” facts
not belonging to that context can be ignored and correct
answers returned. “True by definition” knowledge can be
used across contexts, even fictional ones. This method can
also be used to extend the knowledge base to include facts
belonging to contexts which are not strictly fiction but would
otherwise fail to be considered as fact.

In the preferred embodiment the unique recognition string
(see section 2.3.2.1) of a fictional object must make this clear
to avoid any confusion. Thus the unique recognition string for
[sherlock holmes | might be [“The fictional detective Sherlock
Holmes™].

Contexts can also sometimes be inferred directly from a
reference in a query to an object or relationship that only
belongs to one particular context. For example, the question
“What is the address of Sherlock Holmes?” would infer the
context from the reference to the fictional character. “True
from evidence” facts include the assertion of the class mem-
bership of an entity (e.g. of its principal class) so the fact
[sherlock holmes] [is a member of] [human being] would be
associated with a fictional context and not the base context.

Some embodiments also use contexts to store conflicting
“true by declaration” and “true by choice” facts. For example,
when two different authorities disagree. Users can then
resolve these conflicts by selecting contexts which they wish
to be used when queries are answered. These selections can be
permanently associated with a user and used until the user
changes them. Knowledge associated with a particular reli-
gion can be modelled this way by associating it with a context
pertaining to that religion.

2.3.12 Summary of Knowledge Representation

In the preferred embodiment of the invention the universe
is modelled as a huge array of objects and relationships
between pairs of objects. As the time clock ticks, named
relationships between pairs of objects spring in and out of
existence.

Some of those relationships are known to exist at a particu-
lar timepoint, some of those relationships are known not to
exist at a particular timepoint (negative facts) and with others
the embodiment does not know. The more knowledge that is
in the static knowledge base and the more knowledge that can
be generated, the more complete the knowledge is.

All possible objects “exist” in the knowledge base for all
time. Existence of physical objects (and other objects such as
legal entities which only have life for a given period of time)
is expressed by the presence of a relationship with an attribute
for the time they are around in the real world, e.g.

[fact.1356@semscript.com]: [alive] [applies to] [queen victoria]
[fact.1357@semscript.com]: [fact.1356@semscript.com] [applies for

US 9,098,492 B2

25

-continued

timeperiod] [timeperiod: [timepoint: [“18107]]; [timepoint: [“19017]]]
[fact.1358@semscript.com]: [alive] ~[applies to] [queen victoria]
[fact.1359@semscript.com]: [fact.1358@semscript.com] [applies for
timeperiod] [timeperiod: [timepoint: [“19017]]; [forever]]

It should be noted that relationships can exist between
physical objects even when one is not present in the physical
world any more, e.g. a modern-day book can be about Isaac
Newton even though he died hundreds of years ago. The book
and the person are both physical objects with a relationship
between them existing in the present yet there is no shared
moment in time when they both existed.

2.3.13 Queries

Queries are a machine-readable representation of a ques-
tion. i.e. data which communicates to an embodiment what
knowledge is desired. A number of representations are pos-
sible and the representation will often be at least partly deter-
mined by the chosen knowledge representation method. In
the preferred embodiment, queries look very much like a
series of facts but the purpose is to see whether they can be
justified from knowledge found in, or inferred from, the
knowledge base rather than to assert information. Variables
can also replace objects in the facts (including objects within
parametered objects). For example:

query
f: [abraham lincoln] [is married to] [mary todd lincoln]
f[applies at timepoint] [timepoint: [“1859/5/3”]]

asks the question “Was Abraham Lincoln married to Mary
Todd Lincoln on the 3rd of May 1859?”.

Notice how the name of the first fact is given a variable
rather than a name. In processing the query the engine will
solve for f with the fact name (if any) that asserts that rela-
tionship between Abraham Lincoln and Mary Todd Lincoln,
and then try to satisfy the second line using it. Provided both
lines can be satisfied with at least one value of f the query will
answer “Yes”.

In queries the name ofa fact can be dropped when the name
is unimportant, i.e. when it is not needed for a later part of the
query and when it is not wanted by the user. This is effectively
the same as expressing the fact name as a variable and then not
referencing the variable again. Such lines thus have only three
objects listed.

Variables can also be used in place of other objects in the
facts. For example:

query a
f: a [is married to] [abraham lincoln]
f [applies at timepoint] [timepoint: [“1859/5/3”]]

asks the question “Who was married to Abraham Lincoln on
the 3rd of May 18597”.

If'the query is requesting objects as the answer, one or more
variables that represent the desired objects follow the “query”
statement. If the query is just trying to determine the truth of
the query it is termed herein as a truth query and it has no
variables after the “query” statement. Queries whose purpose
is to produce one or more named objects as answers are
termed object queries. The above query with the a missing
from the query statement would ask the question “Was any-
one married to Abraham Lincoln on the 3rd of May 18597”.

15

30

35

40

45

50

55

26

Note that the query representation is extremely elementary
in form and yet also extremely expressive in what questions
can be represented. This simplicity in form has many advan-
tages for automatic processing and the efficacy of additional
techniques. Embodiments with more complicated or addi-
tional syntax in the query—e.g. with constructs taken from
logic or programming languages—would fail to have these
advantages. Note also that this simple representation means
that the semantics of the query is unrelated to the order of the
lines. Each line places a constraint on the value or values of
each variable within the line. The collection of constraints
define the information being sought and the query header
specifies what variable values are the results of the query.
Although the semantics of the query is unaltered by the line
order, some lines may need to be processed prior to other lines
in order to obtain results from the knowledge base. The query
processing engine is thus free to reorder or chose to process
lines in a different order should the query be presented in an
order which cannot be processed.

A more complicated query is the following:

query a
a [is an instance of] [nation state]

t: a [is geographically located within] [the continent of Europe]
t [applies at timepoint] [timepoint: [“19997]]

tl: f [is the capital of] a

tl [applies at timepoint] [timepoint: [“1999”]]

f [commonly translates as] d

¢ [is the first letter of] d

¢ [equals] [*p”]

which translates as “Which continental European countries
have capital cities whose names start with a ‘p” in 1999?”.

The first line will generate a list of several hundred possible
values for a (current and former countries) which will be
whittled down by the tests in the next few lines (for location
within Europe, etc.). The capital cities are looked up, trans-
lated into strings which are their usual English names and the
first letter is checked to be a “p”. Any values of a remaining
after the last line is checked are returned by the query.

Essentially lines in the query can be regarded as filters if
they reference variables that have been mentioned in earlier
lines. Such lines reduce the possible values for that variable
by doing tests on it, substituting in all previously found values
one by one and seeing if the resulting fact can be found
(directly or after inference) in the knowledge base. If the line
uses a variable for the first time it can be regarded as some-
thing that generates values—finding all possible values for
the variable that are passed downwards. If any values (or
combinations of values) survive the generating lines and fil-
ters to the end of the query they result in a “Yes™ answer for a
truth query, or a list of objects for object queries.
2.3.13.1 Parameters

The preferred embodiment also contains certain param-
eters that can be added to lines in a query for efficiency and
other reasons. These include:
/s
means that the current line should only be processed using
static knowledge. There is no need to use knowledge genera-
tion to find this out (see section 2.4). A typical situation for
this is to see whether a common attribute applies. If the
attribute is a fundamental property that can be assumed to be
always stored statically if it applies, then there is no point in
doing anything more complicated to find it, e.g. a line in a
query might be:
[symmetric] [applies to] r /s
where r is a relation.

US 9,098,492 B2

27

If arelation is used, its core properties are always stored so
we can assume that [symmetric] either applies or not from a
static search and do not need to waste time trying to use
inference to see if it holds.

In the preferred embodiment this parameter also enables
the query to “see” superfluous facts which have been labelled
as invisible.

/1

means that only one answer need be found for this line (i.e.
one substitution for the variables). Two possibilities for using
this are either that the semantics of what is being asked
implies there is only one answer, or that only one answer is
needed. This increases the efficiency of the engine as the
search can stop after the first object is found.

/e

means that the query will only be matched on static true facts
which are not superfluous. One use of this parameter is to
easily implement a generator for the [is a direct subclass of]
relation by checking for [is a subclass] between the classes
with /e. As [is a subclass of] is transitive, a static assertion of
[is a subclass of] between two classes that have an intervening
class will be labelled as superfluous by the system assessment
component (see section 2.11 for details of superfluous facts).
As ignoring these is part of the semantic definition of [is a
direct subclass of], this is the desired behaviour.

2.4 Knowledge Generation

Far more facts exist than can be stored statically. Various
embodiments of the present invention can generate facts not
asserted directly in the static knowledge base usually (but not
exclusively) by referencing and inferring these new facts
from facts in the static knowledge base (and possibly other
generated facts).

One method of doing this is to hard code the generation
rules using program code. The preferred embodiment takes a
more flexible scheme by using generators.

As used herein, a “generator” is a stored entity used by the
knowledge generation system to generate facts not present in
the static knowledge base. In the preferred embodiment, a
generator has one or more target lines which specify a pattern
for the facts that can be generated by this generator (these are
termed “target lines” herein) in combination with mecha-
nisms for generating facts that match this pattern.

In a “dumb generator” such a mechanism may simply be a
query. The query gives values to the unknowns in the target
line or lines and the results of the query are substituted into the
target line (or lines) to generate the facts, if the query is
successful. Ina “smart generator” there is some program code
(termed a “tool” herein) optionally in combination with a
query which is used to generate the facts.

Smart generators are like dumb generators but where the
footer cannot be generated simply by rewriting the results of
a query: some computer code needs to be executed (run
directly, or interpreted) to produce the results.

To put it another way, the query format of the preferred
embodiment, although very expressive, is not Turing power-
ful. This has many advantages in terms of efficient processing
of the query but means that some inference steps cannot be
achieved without additional processing. By adding a Turing
powerful step to the header query, as described here, the full
universe of possible inference steps can be achieved.

Many embodiments are possible in representing generators
but in the preferred embodiment generators are specified in
detail, in three parts:

15

25

35

40

45

28

atitle line identifying it as a generator and listing variables;

(if present) a header query that must be run to see if the
generator applies (and possibly to generate values in a
dumb generator—the list of variables after the generator
line);

and a footer which is a number of facts which can poten-
tially be generated by the generator.

In the preferred embodiment lines starting with

used for comments and are ignored by the engine.
A simple example of a dumb generator is the following:

o

are

generator a%,b%,tp

f: a% [is married to] b%

f [applies for timeperiod] tp
=>

t: b% [is married to] a% *

t [applies for timeperiod] tp

This asserts that if person a is married to person b for a given
time period then person b is also married to person a for that
same time period. This might be obvious for marriage but it
would not be true for example with the relation [is a parent
of].

This example is illustrative. In the preferred embodiment
the above example is carried out by looking for the attribute
[symmetric] to the relation and having a slightly more com-
plicated generator that only switches the two objects around if
the attribute applies. This saves having to have a similar
generator for every relation with this property.
ie.

generator a%,b%,tr
[symmetric] [applies to] r$ /s
f: a% r$ b%

f [applies for timeperiod] tr
=>

g: b% 1§ a% *

g [applies for timeperiod] tr

(plus a similar one for the negative relation)

Dumb generators express inferences about how, for
example, the existence of a relationship implies the existence
of other relationships or how the existence of an attribute can
be used to infer other facts.

For efficiency reasons it is clearly not practical to run every
generator that exists at every opportunity so when answering
a line of a query, the query answering system first checks
information stored statically, and then goes on to look at
generators later by matching the line of the query it is cur-
rently on with lines in the footer of the generator (i.e. it works
backwards). Only the lines marked with an asterisk can be
matched. Ifthe line matches, the top of the generator is run as
a query (perhaps with values substituted for variables) to see
whether the bottom lines can be considered as facts. If they
are, the footer facts are generated and the generated facts are
added to a cache. Any objects that match variables are
included in the answering of the query.

In the preferred embodiment, the character that ends a
variable name indicates rules on what can be matched with it.
Sometimes, when comparing the current line of a query with
the asterisked footer line, a variable will match a variable,
sometimes a named object will match a variable, and some-
times a variable will match a named object. Such matches can
happen within parametered objects as well as at the top level.

The percent sign after the variables in the matched line says
that the variable can be either left as a variable (i.e. matched

US 9,098,492 B2

29

with a variable in the query line and filled by the query in the
top half of the generator) or textually substituted for a name.
If substituted, the variable is removed from the query state-
ment at the top, and the object name is substituted into the
header query wherever the footer variable appears.

For example, if matching [many todd lincoln] [is married
to] [abraham lincoln], the above generator would be run and
the top half would be a query getting all the timeperiods on
file for when they were married. Facts would then be gener-
ated asserting that they were married the other way around for
the same timeperiods.

A dollar sign following the variable says that the variable
must be replaced and textually substituted for a real object
name from the query line being looked at—matching with
other variables is not permitted and the generator will not be
used if that is the kind of match found. If the variable has no
percent or dollar sign it must correspond to a variable in the
query line. By ‘must’ we mean that we cannot use the gen-
erator if the correct match is not present.

The unique fact names for the results of a generator are
created automatically by the inference engine and are
assigned to variables if they are needed for temporal partners
(as with the above example). Facts generated by generators
are also inserted into a temporary cache by the engine so they
can be quickly found for use in subsequent processing of the
query. This cache is checked by the engine even before
searching statically-stored local facts. The cache enables
facts generated in earlier parts of the query to be accessed
without running the generator a second time with the same
objects. By keeping a record of what generators with what
parameters generated items in the cache, the engine can avoid
doing the same operation twice simply by using the cache
items.

As an example of a smart generator, a very commonly
executed generator is the following:

generator tr

a$ [applies for timeperiod] tr
=>timeperiod__to_ timepoint@local
a$ [applies at timepoint] tp$ *

which says that a relationship is true at a timepoint if the
timepoint lies within a timeperiod when the relationship is
true. This generator is vital as it simply is not practical to list,
say, every instant when two people are married as there are an
infinite number of instants in any time period. We instead
statically store a period of time and if a query asks whether
they are married at a given instant the above smart generator
is put into action. First, all the timeperiods are gathered using
the query at the top and the results passed to the timeperiod_
to_timepoint tool (essentially an executable function) with
the timepoint and timeperiod in question passed as param-
eters. If the tool determines that the time point lies within the
timeperiod, it generates the footer with an appropriate name
for the newly-generated fact, otherwise it does not. Note that
it is not possible to do this directly using a dumb generator as
calculation is needed to determine whether one point in time
lies within a named time period.

Note also that the dollar character at the end of the tp$
variable implies that it must be matched with a named
object—a named timepoint. There are an infinite number of
timepoints in any timeperiod so it is only possible to check a
given timepoint, not to generate all the possible answers.

10

15

20

25

30

35

40

45

30

Another commonly-used smart generator is the following:

generator
=> now(@local
[current time] [applies to] n *

which works out which time point is the current time. This
smart generator does not need a query at the top (the query is
null and can be thought of as always returning “yes”). The
reason is that we can always be sure that there is a timepoint
which is the current time. The generator just generates the
footer with the system date and time as the time point when-
ever it is called. Naturally the current time cannot be looked
up statically.

Smart generators can also be used to retrieve highly
dynamic knowledge from a conventional database. For
example, a smart generator could be written to return the
current share price of a particular company by querying sys-
tems in the stock market. (This knowledge in turn may be
used by another generator to calculate the company’s market
capitalization.) In this case, as with the example of the current
time, the smart generator is retrieving knowledge from a third
source rather than calculating from facts originating from the
static knowledge base.

Far more sophisticated smart generators can be written and
we can potentially incorporate all the algorithmic achieve-
ments of the planet into the knowledge base for use in a very
wide variety of contexts.

The computer code (“tool”) that provides the intelligence
to the smart generator is named in the preferred embodiment
by name@machine.on.internet

The machine.on.internet is a named machine which owns
the tool and where the code can possibly be executed
remotely. The term “local” refers to the code that can be found
on the local machine and/or is part of the local knowledge
processing engine.

A wide variety of ways of implementing the tools and
execution of the tools should be obvious to anyone skilled in
the art. These include hard-coding of some of the more com-
mon tools within the engine; remote execution of code
through network protocols (passing the parameters over the
network and receiving the results); text scripting languages
that can be downloaded from a remote machine and executed
locally; other kinds of downloadable languages including
those that are then executed directly on the local machine, etc.

In the preferred embodiment, the generator description is
stored in a relational database which is accessed by the query
answering system.

In the case of smart generators, the name of the tool iden-
tifies the computer code to run. Many tools are hard-coded
within the system and not accessible externally. However, the
preferred embodiment also allows for users to add generators
including smart generator tools using an interpreted language
and an approval step. This is described in more detail in
section 2.9.14.

Most generators only have a single target line. One excep-
tion is the following:

generator

=> age@local

f: a [is the age of] b$ *

f [applies at timepoint] tp$ *

US 9,098,492 B2

31

which has two target lines to match as the age of something
varies from timepoint to timepoint so the timepoint object
needs to be known as well.

An alternative embodiment could still implement this on a
single line with a relation that included the timepoint in the
definition of the relation. e.g.

generator
=> age@local
a [is the age of] [group: b$; tp$]

This involves defining the right class of the relation as a
combination of the object and the timepoint of interest. In this
embodiment, [is the age of] is a permanent relation, in the one
above it is transient.

2.5 Query Answering

The way queries are answered is determined in part by the
knowledge representation and query representation method
chosen.

Even within the preferred embodiment query representa-
tion and knowledge representation method, a number of
choices are available. However, the following gives a detailed
account of how queries are responded to in the preferred
embodiment:

2.5.1 Query Modes

In the preferred embodiment, queries can be run in a num-
ber of modes. Establish mode simply checks whether values
can be found in the knowledge base that confirm the facts:
“no” and “unknown” are thus the same result for truth queries.

Full mode attempts to distinguish between “no” and
“unknown” for truth queries by seeing whether it can estab-
lish a breach of the Golden Rule for any part of the query
using facts in the knowledge base, by assuming that the lines
in the query are true. This test is done if it fails to answer the
query with its first attempt. If it can establish a contradiction
the answer to the query is “no” as we can assume that the
Golden Rule is true. If not, the answer is “unknown”.

This is done in the above query-answering algorithm by
adding a test after the first line of a query has failed to produce
an answer. The test is designed to see whether the failure may
simply be due to the knowledge base not containing the
answer (an “I do not know” answer to the Yes/No question) or
because it is wrong and contradicted by other knowledge in
the knowledge base (a “no” answer to the Yes/No question).

The test is illustrated in FIG. 4. Step 402 involves searching
for a temporal partner for the first line of the query. If there is
one, step 404 is performed: creating a reverse query by mak-
ing the relation negative (or positive if it is negative), and
switching the semantics of the temporal partner between the
concept of “within” and “for all of” for the corresponding
timeperiod (or, in the case of a time point, the time period
implied by the accuracy of the time point). So, the [applies at
timepoint]| relation is replaced by [applies for all of timepoint]
relation and the [applies for timeperiod] relation is replaced
by [applies for score of timeperiod] and vice versa.

In the case where there is no temporal partner (implying
either a permanently true relation or one that is true at the
present), step 406 is performed: the reverse query created is
simply the query line with a positive relation made negative or
a negative relation made positive.

The reverse query created in step 404 or 406 is then run, and
the result examined (step 408). A “yes” answer to the reverse
query means that the routine can answer the original query
with a “no” (step 410). If the answer to the reverse query is
“no”, then the answer to the original query remains unknown
(step 412).

10

15

20

25

30

35

40

45

50

55

60

65

32

For example, although it might be possible for both the
facts “John is married to Sarah in 1999 and “John is not
married to Sarah in 1999 to be true (if they divorced in that
same year) it would not be possible for both to be true if the
second statement was instead “John is not married to Sarah
for all of 1999” and in this case one statement being true
implies that the other is false.

The issue of completeness of results for object queries (i.e.
have all objects been returned?) is dealt with in section 2.5.2
below (it is also tested for in full mode). To do this requires
information in the knowledge base about the number of
objects that have a particular relationship which can then be
matched with the number of objects actually found.

2.5.2 Completeness

Completeness is the issue of knowing whether the answers
that have been given by an object query are a complete list of
all possible answers: there may or may not be answers which
are not in the knowledge base. It is checked for when a query
is run in full mode.

The way it is done is by storing data about how many
objects exist for a template line in a query. If that number of
objects is found and all subsequent filtering of them by suc-
cessive lines in the query produces a definitive yes or no result
we can be sure that the objects that emerge at the end of the
query are a complete list.

In the preferred embodiment, we store the data about num-
ber by the use of queryline objects.

Queryline objects are parametered objects that represent a
possible line in a query (excluding the fact name). Each
queryline object, therefore, has exactly three parameters.
These parameters are either the special object [quezyline
unknown] which represents a variable or they are the names
of specific objects. For example, the possible line of a query:
n [is a child of] [president james monroe]
and all similar lines with another variable are represented by
the single queryline object:

[queryline: [quezyline unknown]; [is a child of]; [president
james monroe]|

To say that President James Monroe has (has ever had)
three children we then include the following fact in our
knowledge base:

[fact.000269 @semscript.com]: [queryline: [queryline unknown]; [is a
child of]; [president james monroe]] [has order] [integer: [“3”]]

When the engine comes across an object-generating line of a
query (i.e. a line containing a variable that hasn’t been used
before), if it is asked to give completeness information to the
query (i.e. if it is run in full mode), it does so by the process
illustrated in FIG. 5. It starts by setting a flag indicating the
completeness of the results to complete (step 502). This com-
pleteness flag can have three values meaning that the results
are complete, incomplete or the completeness status is
unknown.

Next, it looks up whether any information is available on
the number of objects known to exist for the query (step 504).
In the preferred embodiment, it does this by converting the
query to a queryline object and running a second query to see
whether there is a [has order] fact in the knowledge base. If
there is no information on the number of objects, the com-
pleteness flag is set to unknown (step 506), and that line of the
query is run (step 508); the flag will then stay unknown for the
remainder of the query. If there is information on the number
of objects, it compares the number of results found after
executing the line (step 510) with the number of objects
known to exist (step 512), as asserted by the queryline fact in

US 9,098,492 B2

33

the preferred embodiment. If they match, the completeness
status is preserved as complete. If the number of objects
found is smaller than the number indicated, the flag is set to
incomplete (step 514). (If larger, there is an inconsistency in
the knowledge base, so the completeness is unknown, and the
flag is set accordingly—step 516.)

Step 518 checks whether there are further lines in the
query. If there are no further lines, the process simply returns
the objects found, and the status of the completeness flag. If
there are further lines, then, for as long as the completeness
flag remains complete, the engine does extra work to deter-
mine whether the results it has found so far continue to be
complete.

Subsequent lines in the query may filter the objects found
(i.e. the line may include only a variable used to generate the
objects on a previous line so when reached it substitutes the
previously found objects in and only ones which can be
justified survive). Before proceeding to execute subsequent
lines, the completeness status is checked (step 520).

If the completeness status going into a filtering line is
unknown, the remaining lines of the query are executed (step
522), but no further checks on completeness will be under-
gone (the flag remains set to unknown).

If'the status is incomplete, the completeness status changes
to unknown afterwards no matter what the result (step 524):
we do not know whether the missing objects would have
passed through the filter or not without knowing what they
are.

If the completeness flag is set to complete it then becomes
important to do extra work if the object fails to pass through
that line (step 526). If the answer can be shown as a “no” then
the completeness status of the query so far is unchanged. If,
however, it is unknown, then the completeness flag has to be
changed to unknown as well. The method used to determine
between “no” and “unknown” is exactly the same as the one
used to answer a truth query with “no” described above (and
illustrated in FIG. 4): essentially the relation in the query line
is made negative and any temporal partner is added to cover
all of the timeperiod specified—if this new query is found to
be true we can answer “no” to the original mini-query and
preserve the status so far as complete.

For an example of completeness information being used in
an embodiment of the invention see FIG. 7. The answers in
screen 702 are introduced with the text “There are 3 answers
to this question. Here is a complete list.” Without the com-
pleteness check it could only introduce the list with “Here are
the answers I found.”

2.5.3 Explanation of an Answer to a Query

One of the desirable (but optional) features of various
embodiments (including the preferred embodiment) is the
generation of a justification for its answer to a query.

Such explanations are a helpful feature because they dem-
onstrate where the answer “magically” produced came from,
thus greatly improving the confidence the user has in the
result. Moreover, although the results may have come from a
computer, a human being ultimately has to use that knowl-
edge and take responsibility for its accuracy.

Another advantage in embodiments which include user
assessment (see section 2.10) is that the user has a chance to
see where an incorrect answer came from and do something
about the incorrect fact or facts that resulted in that incorrect
response.

The preferred embodiment is operable to produce two
types of explanation: a detailed explanation which is essen-
tially a step-by-step proof of the answer and a concise expla-

20

40

45

50

34

nation designed to give the user a hint about where the result
came from. Other embodiments may produce one or the other
(or none).

FIG. 8 shows an example of both types of explanation in an
embodiment. (This figure is described in more detail in sec-
tion 2.5.6.)
2.5.3.1 Detailed Explanation

In the preferred embodiment, the detailed explanation is
essentially all the facts and generators that it used to find the
answers returned, turned into a natural language proof.

The way that this is implemented in the preferred embodi-
ment is by use of a data structure which is a linked list of items
where each item can either be a string containing a line of
natural language (typically describing an event in the process-
ing ofa query), or a fact. This data structure can either hold the
entire explanation, or the explanation for some part of the
answering of the query.

During the processing of a query, many smaller queries are
executed because many of the lines in the query involve the
use or possible use of generators and the header queries in the
generators need to be run. Some of these generator queries
succeed and some fail—when they succeed, the explanation
for those queries producing the used fact forms part of the
parent explanation. To complicate matters further, some of
these generator runs produce facts which go into the cache,
and the fact is then subsequently found in the cache rather
than from running the generator again. It is helpful that when
this happens, the original explanation for how the fact was
generated before being placed in the cache forms part of the
final explanation, and if the fact has already been justified, it
is not explained twice in the final explanation.

A full explanation is stored with every fact placed in the
cache. When a successful search of the cache is made and the
fact pulled out, a check is made to see whether this fact has
been previously used (and therefore justified) in the explana-
tion of the lines of the current query done so far. If so, we just
add a line saying something like “We already know that”; if
not, we insert the entire explanation for the cached fact into
the parent explanation.

This same process of adding the lines of an explanation into
the parent explanation happens when we successfully gener-
ate facts from a generator. (The same query processing rou-
tine is called for the query header.) When it returns, we take
that explanation for the set of results we are using and insert
it into the explanation for the generated facts with text lines to
help understand how the facts were created. For example, we
can insert a line like “Therefore:” along with (optionally) the
name of the generator between the explanation for the header
query and the footer lines of a generator. As generators are
also called during the processing of queries in the headers of
other generators, lines from explanation can end up being
generated several levels of query-processing deep.

The final step is to translate our data structure into the
natural language explanation.

Translation involves the following three steps:

(1) Eliminating certain repetitive sequences for clarity. For
example, with the pattern:

I know from static knowledge that:
fact 1
I know from static knowledge that:
fact 2

The third line can be eliminated.
(2) Translating the fact ids into presentable names. In the
preferred embodiment, the static fact ids are long and the

US 9,098,492 B2

35

generated ones are unique internal strings derived from the
objects in the fact. Neither of these are very printable. To
make this more palatable, these ids are translated into local
fact names, “fact 17, “fact 2” etc. and a look up table
maintained so these names can be propagated through the
explanation.

(3) Translating the facts into natural language. This can be
done with the translation string for the elements, e.g. sub-
stituting each object for the string which has the relation-
ship [commonly translates as] with it. Fact id translation
comes from the table created in step 2.

The explanations described above are not shown by default
in the preferred embodiment and are only displayed when a
user requests it.
2.5.3.2 Concise Explanation

Various embodiments including the preferred embodiment
can also display a concise explanation. In the preferred
embodiment this is just the statically stored facts that were
referenced on the way to answering the query using a method
similar to that described above but with all the inference steps
and inferred facts not shown. In most cases the human user
can intuitively understand any inference that was done and
any incorrect knowledge used to answer the query is most
likely to be in static form. (If the generator is incorrect in some
way this can be seen with the detailed explanation which can
be selected by the user if they cannot understand what has
happened.)

Other embodiments may include purely calculated facts in
the concise explanation. Purely calculated facts are generated
facts which are not inferred from static facts. e.g. They are
facts which the generator has sourced from somewhere exter-
nal to the static knowledge base.

In embodiments which enable users to endorse and/or con-
tradict facts and/or display the sources of the static fact (user
assessment), this abbreviated explanation enables links to be
placed next to the static facts referenced thereby allowing the
user rapid access to this functionality. The concise explana-
tion is also often short enough that it can be displayed under
the answer to the question without occupying excessive
screen space.

When a detailed explanation is generated, generating a
concise explanation can be achieved by scanning the lines of
the detailed explanation and extracting out the facts that came
from the static knowledge base (avoiding duplication).

Alternative embodiments can generate a concise explana-
tion from scratch without the need to generate a detailed
explanation. In these embodiments the concise explanation is
generated by keeping track of the essential facts which were
referenced while the query was being processed.

Various embodiments may refine the concise explanation
to include only an essential subset of the static facts refer-
enced when answering the query in order to make the infor-
mation presented to the user even more concise. Candidates
for elimination are the more unintuitive facts such as proper-
ties of relationships which users may know intuitively any-
way, e.g. [symmetric] [applies to] [is married to]. In embodi-
ments which can rate the veracity of facts, facts whose
veracity are not in dispute and which have these characteris-
tics are an especially high priority for elimination.

2.5.4 The Process_Query Routine
The semantics and syntax of the preferred embodiment

query are described in section 2.3.13, generators are
described in section 2.4 and the format of knowledge in the
static knowledge base is described in section 2.3. A number of
ways of implementing a query processing system having
these features and semantics is possible.

10

15

20

25

30

35

40

45

50

55

60

65

36

However, the implementation of query answering used in
the preferred embodiment is now described. Facts come from
three sources: (1) the static knowledge base, (2) the knowl-
edge generation system and (3) a cache of all facts previously
discovered when processing this query (and in some embodi-
ments possibly earlier than processing this query if the cache
is not flushed between queries).

The routines that retrieve from these three sources are
static_search, generator_search and cache_search.

The implementation of each of these in the preferred
embodiment is now described.
2.5.4.1 Searching the Static Knowledge Base (Static_Search)

In the preferred embodiment the static facts are stored in a
table in a standard relational database (the ‘facts’ table).

The table has the objects in the fact stored in fields id,
left_object, relation and right_object Each combination of
these is indexed for speed.

Additionally the table has the following extra fields:

negative: a Boolean field which makes the relation negative
(corresponding to the presence of the tilde ‘~’ character
when the fact is written out).

true: whether the system believes the fact is true (set by user
assessment and system assessment—see below).

visible: whether the fact is being used to answer queries.
All untrue facts are invisible and some superfluous ones
are also invisible in certain embodiments.

superfluous: whether the fact can be generated by the sys-
tem anyway.

contradicted whether the fact is in semantic conflict with
other believed-true facts

challengeable: Boolean: whether further user assessment is
allowed for this fact.

last_update: the date and time of the last system assessment
of this fact.

supertluous and contradicted are set by system assessment.
The true field is set by system assessment (sometimes
using user assessment data). User assessment is
described in section 2.10. System assessment is
described in section 2.11.

The parameters passed to the static_search routine are:

The queryline currently being searched;

A pointer to a list of facts into which the routine will place
the static facts that match the queryline (i.e. a place to put
the returned facts);

A pointer to a list of explanations to explain each fact
returned;

A pointer to the query that is being processed;

When the routine is called it builds a SQL SELECT state-
ment to retrieve the static facts from the table that may match
the queryline.

For objects in the queryline that are fully specified objects,
this is a matter of adding an element to the WHERE part of the
statement that specifies this. For example, “where
left_object="abraham lincoln’”.

When an element of the queryline is a parametered object
and one or more of the parameters are variables, some
embodiments that wish to (and where their version of SQL
supports it) can build a wildcard component of the WHERE
clause corresponding to the known and unknown elements.
For example, if the left_object in the query was [timepoint: a]
the corresponding part of the where clause would be “(left_o-
bject like ‘timepoint:%’)”. Other embodiments could just
leave partially specified objects out and eliminate by match-
ing the returned results against the queryline after the
SELECT statement has received the candidates.

The WHERE clause also contains some conditions associ-
ated with the extra parameters. For most requests this will be

US 9,098,492 B2

37

“true=1 and visible=1". However, this will be adjusted by any
parameter settings for the queryline (see section 2.3.13.1).
For example, in the preferred embodiment when the “/s”
parameter is used the “visible=1" isn’t specified as some
invisible facts are true and superfluous but as the parameter
will stop any fact generation from being done it makes sense
to use the fact anyway.

Another situation is when the queryline specifies the fact
id. In this situation even the true field isn’t constrained as the
semantics of a queryline specifying a fact id are to enquire
about the facts elements, not to ask whether the relationship is
true.

The WHERE clause also needs to specify the negative field
according to whether the relation in the queryline is positive
or negative.

Once the SQL query has been assembled it is executed to
retrieve a list of static facts. Each of these facts is then tested
against the queryline if necessary to ensure it matches.

The facts that match are added to the fact list with a simple
explanation added to the explanation list. The explanation
consists of two lines: “I know from statically stored knowl-
edge that” and the fact itself.

The facts and explanations are also added to the cache (if
not already present). If already present, the explanation is
substituted for the static one if the explanation in the cache is
longer.
2.5.4.2 Searching Generated Facts (Generator_Search)

The generator_search routine receives as parameters the
queryline and a pointer to a list of facts and explanations
where the matching generated facts are to be placed. In com-
bination with the generators themselves and tool implemen-
tations it forms part of the knowledge generation subsystem
in the preferred embodiment.

If'the queryline ends “Is” generator_search simply exits. If
it ends “/1” it exits if or when there is one returned value.

The first thing it does is assemble a list of generators that
are capable of producing facts which match the queryline
provided. It does this by matching the queryline against the
target lines of the generators and selecting the generators that
have one that matches.

In embodiments where generators can have more than one
line to match, the routine may need to scan later lines in the
query to match against the other target lines once the first line
has been matched. In these embodiments, a pointer to the
query will need to be passed to enable this scanning.

For each matching generator it then does the following:

If there is a header query it:

substitutes any values into the header query from the

matches in the target line (if necessary).

removes from the list of header query variables any vari-

ables in the target line which have been matched with a
known object.

calls process_query on this header collecting all the values

returned.

If a smart generator it then:

passes each set of values into the tool and collects the facts

it generates.

If a dumb generator it:

substitutes each set of values generated by the query and

matches from the queryline into the footer lines to gen-
erate facts. (Any variables for the fact id in a generated
fact are given values as this is being done.)

For each of the facts generated by either method it:

creates an explanation. This explanation is the explanation

for the set of values used, generated by the processing of
the header query, plus an introduction line, plus the facts
generated using this set of values. For dumb generators

w

10

15

20

25

30

35

40

45

50

55

60

38

and smart generators with a header, the introduction line
is “Therefore:” and the name of the generator. For smart
generators without a header query it is “By calculation:”
and the name of the smart generator.

stores the fact and explanation in the cache ifitisn’t already

there. If it is already there, it substitutes the explanation
ifthe newly generated explanation is shorter than the one
stored.

if the fact matches the queryline, it adds the generated fact

and explanation to the results list.
2.5.4.3 Searching the Cache (Cache_Search)

The cache is where facts previously found using the other
two sources are stored.

The cache contains the facts and the best (shortest) expla-
nation associated with each fact.

The routine receives a queryline and a pointer to fact list
and explanation list as parameters. The facts in the cache that
match the queryline are to be placed in the fact list and their
corresponding explanations in the explanation list. As with
the other two routines, the correspondence between the expla-
nation and fact is established by the ordering. e.g. The 5th
explanation in the list corresponds to the 5th fact in the list.

It also receives a pointer to the query being processed as a
parameter. This enables the routine to keep the detailed expla-
nation a little neater by avoiding explaining the same fact
twice.

The process_query routine maintains a record of all the
queries that are currently being recursively processed by
maintaining a pointer in the query object that points to its
parent query. Child queries are queries which are being pro-
cessed to provide answers for another query. That is, a child
query is the query that is formed from the remaining lines of
a query when the first line is resolved (see below for how this
is done) or a query in the header of a generator called when
processing a queryline for a parent query.

The first thing this routine does is look up the matching
facts in the cache.

If it finds a match it then scans to see whether this fact has
been explained before.

The query object holds a ‘pre-explanation’ which contains
the explanation for a set of values which is pending while the
remainder of the lines using those values are evaluated. It also
contains a standard explanation which is the partial explana-
tion so far for the query.

By scanning up the linked list of queries defined by the
parent_query pointer and for each query scanning both the
pre_explanation and standard explanation for matches, the
cache_search routine can determine whether this fact has
been explained previously.

If it has been explained previously it simply creates a two
line explanation for the fact. “We already know that:” and the
fact. If it hasn’t been explained before, it copies the entire
stored explanation from the cache into the returned results.

A fast cache lookup (avoiding an exhaustive search of the
stored facts) can be achieved in various embodiments by
hashing.

As the queryline contains both known and unknown
objects, one implementation is to hash each fact several times
to enable fast lookup even with the unknowns.

For example, one simple implementation designed to rap-
idly locate facts in the cache could create three open (exter-
nally-chained) hash tables for left_object, relation and righ-
t_object pointing at all facts with a named object in the hashed
position. Possible cache matches for a queryline could then be
located by looking up cache facts that match the known
object(s)/positions(s) in the queryline. A full check needs to
be done on the candidates but the hash tables would mean the

US 9,098,492 B2

39

number of candidates checked was substantially smaller than
an exhaustive scan of the cache.

A faster implementation is to additionally create a hash
table for each combination of two known objects, e.g. facts
matching a queryline containing a known left object and
known relation could be rapidly looked up if all facts were
hashed on their objects in those positions.
2.5.4.4 Operation of Process_Query

The process_query routine receives the following param-
eters:

A pointer to the query to be processed.

A pointer to a list of strings used to return variable results.

A pointer to an explanation list used to return an explana-
tion for each set of results.

The strings returned are in the form:

<variable>=[object]

The number of sets of results can be determined by divid-
ing the number of strings in the string list by the number of
header variables in the query. (For truth queries no variable
values are returned.)

The process_query routine also returns a status value indi-
cating the status of the query when processing has finished.
The possible return values for truth queries are:

Yes: the truth query can be satisfied.

No: It can be proven that the truth query cannot be satisfied.

Unknown: It wasn’t possible to establish an answer to the
truth query either way.

No/Unknown: For non-full mode this just means that it
wasn’t possible to satisfy the query and that no attempt
was made to answer “no”.

For queries with header variables the possible return values

are:

complete: the list of values returned is all that exist.

incomplete: the list of values returned is shorter than what
exists.

completeness_unknown: these are the values the system is
aware of.

Both types of query can also return

error—when something goes wrong.

FIG. 6 shows the process_query method of the preferred
embodiment. This figure assumes the query is being run in
full mode and that explanations are being generated. (If it
isn’t, the steps necessary for completeness, answering no and
generating explanations can be skipped.)

First a check is done on the number of lines in the query
(602).

If there are no lines in the query yes/complete is returned
(604) and the routine ends.

Otherwise the top queryline is retrieved (606).

In order to avoid infinite loops a record of all querylines
currently being recursively processed is maintained, the
“unresolved stack™. The first thing that is done with the que-
ryline is to check whether it is anywhere in this stack (608).

If it is, unknown/completeness unknown is returned (610)
and the routine ends. Otherwise the queryline is added to the
unresolved stack. (612).

An order is next obtained (if present) for this queryline
(614). This is described in detail above.

Next a search of the cache is undertaken (616). The
cache_search routine is described in detail above.

The “queryline cache” is a record of all querylines that
have been successfully processed. By keeping a record of all
processed querylines and storing every result matched to a
queryline in a cache, the static search and generator search
routines can be skipped when the queryline has been pro-
cessed before, making the routine more efficient. (For this

10

15

20

25

30

40

45

40

reason both the queryline cache and the fact cache must be
flushed simultaneously or not at all.)

In step 618 the queryline cache is checked.

Ifthe queryline has not been cached the static and generator
searches are undertaken (step 620) and the queryline added to
the queryline cache (step 622). (Either or both of these search
routines may be skipped if the queryline ends “/1”” and a fact
has already been found.)

Control then passes to step 624 which sees whether the
queryline contains any variables and whether any matching
facts have been found.

If there are no variables and no results, we test for “no” as
described above (step 626) and return no/complete if success-
ful (step 628) or unknown/completeness unknown if not (step
610). In either case, the queryline is removed from the unre-
solved stack before completion (step 611)

If there are results or variables in the queryline, control
goes to step 630 where a check is made to see whether there
are any facts found which match the queryline.

If there are no matching facts the routine returns unknown/
completeness unknown (step 610).

Ifthere are matching facts control passes to step 632 where
duplicate facts are removed. If there are duplicate facts the
one with the shortest associated explanation is the one kept.

Control then proceeds to step 634 where a provisional
return result is set. If it is a truth query the provisional result
is yes; if an object query and the order isn’t known, the result
is completeness unknown, if an order query and the number of
matching facts matches the order the result is set to complete,
otherwise the result is set to incomplete

What remains is to process the remaining lines of the query.

In the preferred embodiment, this is done by creating a
child query for each matching fact consisting of the remaining
lines with the values of the variables implied by the matching
fact substituted into the remaining lines, executing each query
and carefully preserving the results and explanations before
and after (step 636).

Each query has an explanation called a ‘preexplanation’
that is used to retain a potential part of the query’s explanation
should the query be successful. It is the explanation for the
fact which is being substituted into the remaining lines. It is
also scanned by the cache_search routine to avoid explaining
the same fact twice.

Each child query has its preexplanation explanation stored
and set as the explanation for the fact being used generate it.

The header variables for each subquery are also reduced for
each variable that is matched to the current fact. For example
if the header query contains the variable “a” and the queryline
contains an “a”, the child query will no longer have “a” as a
query variable as this is now satisfied in the child query.

The value sets for the header variables so far are also
preserved. Once the query is processed the resulting value
sets, explanations and result are also preserved.

Also within step 636 the results of each query are analysed
and used to set the following values:

any_yes: true if any of the child queries returns yes

any_unknown: true if any of the child queries return

unknown

Also for object queries the provisional return result is set to
complete but if any of the child queries returns completeness_
unknown, the return result is set to match.

At the end of step 626 we now have for each matching fact:

a preexplanation of the fact.

a set of results for the corresponding query and an expla-

nation for each set.

a return value for the query

US 9,098,492 B2

41

a set of header variable values that were determined from

the first line (possibly null)

Success of a child query is defined as follows:

an object query returning >0 results

a truth query returning yes

a truth query returning no when current query is a truth

query and all other child queries have returned no as
well.

In step 638 all duplicate sets of results are eliminated from
those that succeeded. When duplicates are located, the result
that is retained is the one with the shortest explanation.

Control then passes to step 640 where the explanations are
taken care of. This is done by merging the preexplanation for
the fact with the explanation returned by the query that
returned the results. This combined explanation is appended
to the explanation for the main query and associated with the
returned result set by adding it and the result set to the lists
passed as parameters to the process_query call.

The final step is step 642 where the return result is calcu-
lated and returned.

For a truth query the return result is no if all the child
queries returned no, yes if any_yes is set and unknown oth-
erwise.

For an object query the return result is completeness
unknown if any_unknown is true otherwise it is the result set
provisionally in step 634.

2.5.5 Process_Query Refinements

Various embodiments may contain the following refine-
ments:
2.5.5.1 Line Reordering

As discussed above, the semantics of a query in the pre-
ferred embodiment is unrelated to the order of the lines. Each
line places a constraint on the values returned and all returned
objects must pass all these constraints.

However, the tractability of producing all the answers is
affected by the line order in embodiments which apply the
constraints in the order they appear in the query.

For example, consider a query where the [current time]
[applies to] now line appears at the end of the query and
earlier lines use now in temporal partners. The query still can
be viewed as making sense but an embodiment processing the
lines in order would be being asked to generate all the time-
points when a fact holds and then subsequently eliminate all
the ones which [current time] does not apply to. As there are
an infinite number of timepoints in any timeperiod this is
problematic.

One approach in some embodiments is to simply leave it to
the person writing the query (e.g. in the translation template)
to put the lines into a sensible order.

Another approach is to add some line reordering code in the
process_query routine where a flag is set if the current que-
ryline is potentially producing too many results to store and
instead of just failing, the line is reordered to the end of the
query. Failure would only occur if the line failed a second
time (when being processed in its new position).

2.5.6 Example of Query Answering and Explanation Genera-
tion

FIG. 8 illustrates query processing and explanation gen-
eration in an embodiment of the invention.

The question “Is Sean Connery resident in the UK?”” has
been entered into a web browser connected to an embodiment
of'the invention (802). The question has been entered into the
embodiment’s “general prompt” (804).

This is a fairly challenging question to answer because the
static knowledge base contains no direct knowledge on this
query. Furthermore, inferring the negative requires some dif-
ficulties because although one can only be primarily resident

10

20

25

30

35

40

45

50

55

60

65

42

in one place at a time that place can be specified to different
levels of accuracy. For example, if someone is primarily resi-
dent in London, they are also resident in England.

However, the embodiment is able to immediately answer
the question in the negative (806) and produce a list of the
static facts it used to provide that answer (808). The key one
ofimportance to the human user is that he has been resident in
the Bahamas since at least the 15th of March 1996. The static
fact expressing this is:

[fact.1148017@semscript.com] [applies for timeperiod] [timeperiod:
[timepoint: [“1996/3/15]]; [iafter]]

and the subject fact is:
[fact.1148017@semscript.com]: [sean connery] [is living in]

[the bahamas]

As the subject fact is referenced by its temporal partner, it
is not listed separately and the system translates them both
together.

A small refinement is that in the translation, the system
tries to distinguish between whether this date is just the ear-
liest known date that the fact was true or is the point when it
began to be true. With the former case, the translation routine
inserts “at least” into the translation (as it did in this case).

It does this by doing a query to see whether the reverse
relationship was true at the start point of the time period (it
actually communicates slightly more knowledge than is actu-
ally in the explanation):

query
f: [sean connery] ~[is living in] [the bahamas]
f [applies at timepoint] [timepoint: [“1996/3/15™]]

This query returns unknown so the “at least” is inserted. (The
user who asserted this fact sourced the knowledge from an
interview that he gave dated the 15th of March 1996 where he
said he was currently resident in the Bahamas. As the date
when he first started living there was unspecified this was all
that could be asserted.)

In the illustrated embodiment all the static facts are shown
in the concise explanation. Other embodiments choose not to
display some of the more esoteric ones such as properties of
relations, particularly if the system believes them to be defi-
nitely true and thus not suitable for presentation to the user for
user assessment (see section 2.10).

Initially the user was just presented with the answer (806),
the concise explanation (808) and an unambiguous retransla-
tion of the query (809). This unambiguous explanation con-
tains a link to some text which explains how the question was
translated by reference to the translation template and which
objects were substituted (see section 2.6) However, a link for
the detailed explanation was also provided (810). By clicking
onthis link the user is presented with the detailed explanation:
812 and 814 (split into two for space reasons on the figure).

The detailed explanation shows every step of the solution
giving all the static and generated facts as well as what gen-
erator was used to generate them. This detailed explanation
can be used to see exactly what was done in order to answer
the query. In most cases the static facts are sufficient for a user
to appreciate how their question was answered. (In some
embodiments the names of the generators would link to pro-
files describing the generator.)

To further illustrate the knowledge generation (section 2.4)
and query answering system, it may be helpful to explain how
this question was answered in more detail.

US 9,098,492 B2

43

The question “Is Sean Connery resident in the UK?” was
translated without need for further enquiry into the following
query by the translation system (see section 2.6.6):

44

query tp

[right unique] [applies to] [is living in] /s
t: [sean connery] [is living in] b

t [applies for timeperiod] tp

5 b ~[equals] [united kingdom]
query b ~[is a more accurate version of] [united kingdom]
[current time] [applies to] now [united kingdom] ~[is a more accurate version of] b
f [sean connery] [is living in] [united kingdom]
f [applies at timepoint] now
The first three lines are easily satisfied from the following
10 facts in the static knowledge base. The first of which is:
The process_query routine proceeds line by line as described [right unique] [applies to] [is living in]
above in section 2.5.4. This knowledge was collected from the user when [is living
The first line is readily solved by a smart generator which ~ in] was added using the add_relation process (see section
generated the single fact: s 2.9.7.5). As the [right unique] value is always asked for by the
[current time] [applies to] [timepoint: [“2006/7/3/11/12/ process, the /s quahﬁer can safely be useq for.efﬁC{ency as the
027]] system expects that if this property holds it will be in the static
satisfying the first line. The solution for the variable now was m%vgledge basei.ﬂ hing th i fth
then substituted into the remaining lines to produce the fol-] e nexttwo facts matching the next two fines of the query
lowing query: 20 A€
query [fact.1148017@semscript.com]:[sean connery] [is living in] [the bahamas]
g e . . [fact.1148017@semscript.com] [applies for timeperiod] [timeperiod:
f: [sean connery] [is living in] [United Kingdom] . e y1q. 1
f [applies at timepoint] [timepoint: [*2006/7/3/11/12/02"]] [timepoint: [*1996/3/157]]; [iafter]]
25
. . The two lines were added by someone using the add_fact
This query (called in standard mode) produced “no/un- process (see section 2.9.10) Y g -
known”—i.e. there is nothing in the static knowledge base, o T
. 2 After substitution the remaining lines in the query are:
cache or generator subsystem that could establish this, imply-
ing it is either false or unknown. 30
As the query was called in full mode, process_query then query
tries to answer “no” to the question by inverting the relation- [the bahamas] ~[equals] [united kingdom] o
hi d ch ing th lati in the t 1 part to th [the bahamas] ~[is a more accurate version of] [united kingdom]
ship and © ,anglng € re a.10n 1n the tempora P?l her to N € [united kingdom] ~[is a more accurate version of] [the bahamas]
corresponding one as described above. The resulting query is:
35
the value of tp=[timeperiod: [timepoint: [“1996/3/157]];
query [1after]]
f: [sean connery] ~[is living in] [United Kingdom] . . s
f [applies for all of timepoint] [timepoint: [“2006/7/3/11/12/02”]] 18 felzelunlf d dready for remmlng if the above truth query can be
established.
40" The first line of this query is readily satisfied by a smart
This query is then passed recursively to the process_query generator called [tool.equals2@semscript.com]
routine which sets about trying to justify the first line.
There is no fact in the static knowledge base or cache that
. generator
matches so the routine goes on to try generators. 45 —> equals2@local
One generator whose target line matches is a$ ~[equals] b$ *
[generator.rightuniquel@semscript.com]|
([tool.equals1 @semscript.com] is just the same but for posi-
senerator ip “ tive [equals]) .
[right unique] [applies to] r$ /s The tool [equals2@]local] is passed the values of a$ and b$
tarb . ([the bahamas] and [united kingdom]) and simply checks that
;[ilf[’ep;f;sf]oi ;‘mepemd] tp they are different objects. It then generates the fact:
b ~[is a more accurate version of] c$ [the bahamas] ~[equals] [united kingdom]
S$> ~[is a more accurate version of| b 55 The remaining two lines are satisfied with the dumb gen-
;: % r§ ¢ * erator [generator.geog_accuracy(@semscript.com|:
g [applies for timeperiod] tp
generator tp
This generator captures the meaning of the [right unique] a$ [is an instance of] [geographical area]
. . . LS . f: a$ ~[is geographically located within] b$
attribute, essentially that if a relation is right unique and that f fapplies for timeperiod] tp
another different object has this relationship with the left -
object, then all other objects cannot have the relationship with g: a8 ~[is a more accurate version of] b$ *
the left object at the same time. & [applies for timeperiod] tp
The target line a$ ~r$ c$ is successfully matched with [sean 65

connery| ~[is living in]| [united kingdom] and the results
substituted into the header query to get:

a$ gets resolved to [the bahamas] and b$ [united kingdom]
turning the header query into:

US 9,098,492 B2

45

query tp

[the bahamas] [is an instance of] [geographical area]

f: [the bahamas] ~[is geographically located within] [united kingdom]
f [applies for timeperiod] tp

46

(In reality, in this embodiment, the generator will create an
internal id for the generated fact that is unique. The “fact 12:”
in the detailed explanation is a simplified version of this for
display to the user.)

5 To satisfy the final line of the original (inverted query),
The first line of this query is satisfied from the static knowl- ﬁggg.rator [tool timeperiodtotimepoin2@semscript.com] is
edge that: ’
[the bahamas] [is an instance of] [nation state]
and 10 generator tr
[nation state] [is a subclass of] [geographical area] a$ [applies for timeperiod] tr
E . : =>timeperiod_ to_ timepoint2@local
. The generator [generator.iaifl @semscript.com] does this 25 applies for all of timepoint] tp$ *
inference:
15 which retrieves all the timeperiods that the fact applies and
?_en;rfltor tf,”c?’ b gives them to the [timeperiod_to_timepoint2@]local] tool to
‘ ab [is an instance of] b /s see whether the provided timepoint ([timepoint: [“2006/7/3/
[applies for timeperiod] tp o1 - . . s s
b [is a subelass of] c% 11/12/02”]] in this case) lies completely within the timep-
=> eriod.
: a$ [is an inst % *
: [iip[ﬁezl}gﬁfnng; ;ﬂ dc] p 20 As the previous generators have pr0V1de?d the tlmepenqd
[[timeperiod: [timepoint: [“1996/3/15”]]; [iafter]] the tool is
) able to generate the fact that it is true for all of this timepoint.
To satisfy . . s . As this reverse query is satisfied, the process_query routine
[the bahamas] ~[is geographically located within] [united . >
. can finally return “no”.
kingdom] s discussed above the detailed explanation shown
the generator [geog_distinct2@semscript.com] is used: s discussed above the detatled explanation shown 1s gen-
erated as the query is being executed, carefully retaining
explanation sequences for each fact and piecing them
generator 3 together to produce a single explanation of the answer or
a$ ~[equals] b$ 30 answers. The concise explanation is created by extracting and
f1: a$ [is an instance of] ¢ translating the static facts from this detailed explanation.
fl [applies for timeperiod] t1
[geographically distinct from each other] [applies to] ¢
2: b$ [is an instance of] ¢ 2.6 Translation
2 [applies for timeperiod] t2
t3 [is the timeperiod intersection of] [group: t1; t2] 35
= . o Translation is the art of converting the structured knowl-
f: a8 [is geographically distinet from] b$ * edge and associated entities in the system into and out of
f[applies for timeperiod] t3 natural language
Hich N Hically distinct £ Hoth 2.6.1 Denotational Strings
wiie cap}urels the igiﬁlgrap 1cay 1slt.1nctt ;Olm le ac ott.er] 40 A key concept to understanding various embodiments of
propertyo 4class. As sllnlroperty alp prestohe class [na dlon the invention is the concept of a denotational string. Denota-
Ztatﬁ] (Ill.e.bn%two natlo(;ls gvedolze r prmg terrltor}{)) » an a; tional strings are strings in a specific natural language that
oth [the ba gmas] an [um.te. 1ng oml are Mmembers, an denote objects in the knowledge base.
as the class is permanent it is able to infer that they are . . : . .
geographically distinct for all time. 45 Denota.tlonal strings are linked to their cor.respondu?g
Generator [generator.geog_distinct3@semseript.com] objects via facts. These facts can be stored sta.tlcally or in
gives meaning to the relation [is geographically distinct some cases generated by the knowledge generation system.
from]: e.g. The facts:
generator t 50 [*abe lincoln™] [can denote] [abraham lincoln]
v: a$ [is geographically distinct from] b$ [“president lincoln™] [can denote] [abraham lincoln]
v [applies for timeperiod] t
=
f: a$ ~[is geographically located within] b$ * provide a link between two ways of identifying the famous
 [applies for timeperiod] t 55 former US president in natural language and the internal id.
o . . Generators can also be used to generate denotational
A similar sequence happens to satisfy the second query line: strings. For example, the following generator enables a user
[umted] kingdom] ~[is a more accurate version of] [the baha- (5 pe able to specify any object in the system by its identifier:
mas
so the [generator.rightuniquel @sanscript.com] can finally ¢,
generate the facts: generator b%
b% [is the id corresponding to the string] a$
=
[fact12]: [sean connery] ~[is living in] [united kingdom] a$ [can denote] b% *
[fact12] [applies for timeperiod] [[timeperiod: [timepoint: [“1996/3/157]]; 6

[iafter]]

[is the id corresponding to the string] can be implemented
using the following generator:

US 9,098,492 B2

47

generator
=>string_ to_ id@local
a% [is the id corresponding to the string] b%

The tool string_to_id simply converts a string in the form
“[<id>]” to [<id>] and creates the fact in the event that the
right object is specified and the left not; converts an id to its
string form with square brackets around it in the event that
only the left object is specified; does nothing if neither are
specified; and checks that the two match and generates the
fact if they do, if both are specified.

This generator thus generates all facts of the form:
[“[abraham lincoln]”] [can denote] [abraham lincoln]

in response to any query line with the relation and at least one
specified object. This generator enables users to use any inter-
nal id to communicate with an embodiment.

Another example, is this generator that enables timepoints
to be parsed:

generator
=>timepoint_ parser@local
s$ [can denote] [timepoint: a%] *

The tool timepoint_parser receives the string s$ (and a % if
specified) and sees whether s$ corresponds to any of the
various formats that we use to specify points in time. If the
string can denote one or more points in time the correspond-
ing facts are generated (after comparing to see if they match
a % in the unlikely event that a % is specified).

This generator can generate facts like:

[“the 3rd of January 1992”] [can denote] [timepoint: [“1992/1/37]]
[“June 1732”] [can denote] [timepoint: [“1732/6™]]

Similar generators can be written for integers and various
parametered classes.

2.6.2 Common Translation

The common translation string is a concept which exists is
various embodiments. It is a natural short string that denotes
the object in natural language. It need not be unique but needs
to be fairly specific and suitable for communication about the
object in context.

Common translation strings are asserted with the [com-
monly translates as| relation.

An example is:

[william jefferson clinton] [commonly translates as]| [“Bill
Clinton”]

As with denotational strings, generators can be used to
generate common translation strings for certain special
objects such as integers, strings, timepoints etc.

2.6.3 Unique Translation

Unique recognition strings (see section 2.3.2.1) are used
for unique translation in the preferred embodiment.

The relation [uniquely translates as] is used to assert these.
e.g.

[william jefferson clinton] [uniquely translates as] [“William
Jefterson Clinton, the 42nd President of the United States™]

As with denotational strings and common translation
strings, generators can be used to generate unique recognition

10

15

20

25

30

35

40

45

50

55

60

65

48

strings for certain classes of object such as strings, time-
points, parametered objects etc.

e.g.

[integer: [“8128”]] [commonly translates as] [“8128”]

[“hello”] [uniquely translates as] [“The string ‘hello™]

[group: [abraham lincoln]; [florence nightingale]] [commonly translates
as] [“Abraham Lincoln and Florence Nightingale”]

are all examples of translation facts generated by generators.
The third example uses a smart generator to query the knowl-
edge base for the common translation strings for each object
in the group and then ties them together in to a list.
2.6.4 Relations

Translation of relations is slightly different from that of
objects in that relations are expressed using a different gram-
matical construction.

The preferred embodiment for the English language uses:
[is a present central form of]
to denote a string used to express the relation between two
objects in a manner similar to [can denote]
e.g.
[“is the spouse of™] [is a present central form of] [is married

to]

Present central forms are also used for [commonly trans-
lates as] and [uniquely translates as]
e.g.
[is married to] [commonly translates as] [“is married to”]
smart generators can then adapt this string with string
manipulation e.g. by substituting the “is” for other words and
phrases.

For example, the preferred embodiment contains the fol-
lowing smart generator:

[tool.centralpresentformconversionl @semscript.com]

generator

=>centralpresentformconversion@local

a [is a central present form conversion of: tense$; negative$; plural$;
adverb$]

cpf$ *

which converts central present form strings to another string
corresponding to the supplied tense (an instance of [english
tense|), negative value (an instance of [boolean]), plural value
(an instance of [boolean]) and adverb (an instance of [string],
possibly null).

e.g.

[“have always been geographically located within™] [is a central present
form conversion of: [present perfect continuous]; [false]; [true];
[“always™]] [“is geographically located within™]

Another string translation is
[is an attribute form of]

where the form in combination with the second object can be
considered a kind of attribute of the first object. e.g.

[“the capital of”] [is an attribute form of] [is the capital of]

That is “the capital of france” can be thought of as an
attribute of Paris. This relation is useful for parsing certain
types of statements or questions. It is readily generated with a
smart generator.

US 9,098,492 B2

49

Another translation relation used for describing relations

is:

[is a left possessive form of]

which describes the relation in a way common in English
where the left object is perceived as belonging to the right
object with a class used to identify the relation. e.g. In English
if you say:

“Paris is France’s capital city”

“capital city” is a class and the possessive form of France is
used to assert that the relation exists between Paris and
France.

This concept is represented as:

[“capital city™] [is a left possessive form of] [is the capital of]

Again this concept is useful in translation and is prompted
for in the add_relation process (see section 2.9.7.5).

2.6.5 Other Languages

The example embodiments described give support for the
English language. However the principles described herein
can also be used to create embodiments which support other
natural languages.

There are several thousand living languages used through-
out the world and a desirable feature in various embodiments
is to provide support to either an alternative language to
English or to multiple languages either including or not
including English. As the underlying knowledge representa-
tion method is distinct from natural language (unlike docu-
ment based systems) this support can allow access to at least
some of the same underlying facts to users communicating in
multiple natural languages.

To create support for other languages one can first create
analogous relations to those described herein for English, for
each of the languages that one wishes to support.

For example, to support the concept of denotational strings
in the French language one can add a relation analogous to the
English language [can denote] relation.

e.g.

[“pays™] [can denote in french] [nation state]

or to support many languages consistently, a parametered
relation could be used. e.g.

“maa”] [can denote: [finnish]
‘pays”] [can denote: [french]
‘gwlad”] [can denote: [welsh
‘pais”] [can denote: [spanish

[nation state]
[nation state]
] [nation state]
] [nation state]

<

[
[
-
[

<

(Single language embodiments may choose to use that
language for the id naming as well.)

Similar analogous relations are needed for [commonly
translates as]| and [uniquely translates as]

Support is also needed for grammatical data associated
with the desired language and this grammatical data could
desirably be prompted for at an appropriate time in the appro-
priate add knowledge process (see section 2.9).

For example, unlike English, many Indo-European and
other languages associate a grammatical gender with at least
some nouns and knowledge of this gender is necessary to
produce grammatically correct productions of the language.

In each situation several ways of storing this knowledge
should be obvious from the principles described herein.

For example:

[french masculine gender] [applies to] [“pays”]
or the gender could be associated with the denote relation, e.g.
[group: [“pays”]; [french masculine gender|] [can denote:

[french]] [nation state]

In addition there are sometimes irregular properties of a
language that cannot always be derived from rules. For

10

15

20

25

30

35

40

55

60

65

50

example, in English, in the preferred embodiment, we prompt
in the add_class process (section 2.9.7.3) for the plural forms
of denotational strings and store this in the static knowledge
base. (English contains many irregular plurals and pluralisa-
tion in phrases can be hard to do automatically.) In languages
where the grammatical rules contain fewer exceptions this
may be unnecessary or it may be necessary to prompt for this
or additional information.

In summary, to support other languages requires following
the principles described herein to represent any language-
specific translation and grammatical knowledge and if nec-
essary, to prompt for it during the appropriate add knowledge
processes. This knowledge is then available for translation
when the embodiment is interacting with a speaker of the
target language. Translation routines and templates for the
language also need creating, again following the principles
described herein but adjusted according to the properties of
the target language.

2.6.6 Question Translation

In the preferred embodiment translation of natural lan-
guage questions into queries is achieved by the use of trans-
lation templates. Translation templates contain a pattern
which natural language can be matched against in combina-
tion with a description of how to translate natural language
that matches that pattern into the target entity.

This technique can translate questions into queries. The
preferred embodiment can also translate natural language
assertions of knowledge into facts (see section 2.6.9). Other
techniques resolve some ambiguity issues.

As used herein, the term “question” refers to any sequence
of'words in natural language the purpose of which is to solicit
knowledge from the system. It need not necessarily conform
to the classic grammatical definition of a question. For
example, it could be in imperative form such as “Tell me what
the capital of France is” or the meaning could be implied. For
example, in some embodiments entering just “Abraham Lin-
coln” could be an abbreviation for “Show me a profile screen
for Abraham Lincoln”. (Generation of profile screens is dis-
cussed in section 2.7.)

A ftranslation template in the preferred embodiment con-
tains:

the pattern: a sequence of known and unknown strings
using variables for the unknown strings;

a header query which generates results for the translation
and possibly does other consistency checks on the
strings;

a footer which is the result of the translation of the natural
language text after values have been substituted in. This
is a query when translating questions;

in embodiments supporting multiple natural languages, it
may also identify the language it supports (other
embodiments may store the templates separately for
each language making this identification implied).

An example translation template is:

“what is”/“what’s” a b

query c,d

a [is an attribute form of] ¢

b [can denote] d

query e

[current time] [applies to] now
fiecd

f [applies at timepoint] now

US 9,098,492 B2

51

The top line is the template. Any sequence of three recog-
nised strings where the first is “What is” or “what’s” will be
matched with this line and the query at the top run to see if it
produces results.

The templates are indexed by facts in the form [<string>|
[is part of the translation] [<template name>].

When analyzing the string, we therefore only need to look
ata small number of templates which may match—we do not
need to scan them all.

For example, if “What is the capital of France?” is asked as
a question the engine will first attempt to recursively break
this up into a sequence of recognized strings. This is achieved
with a function which returns all sequences of recognised
sequences of one or more words in the string passed to it. The
function achieves this by scanning the string from left to right.
When a word boundary is found the currently scanned
sequence of words is examined to see whether it is a recogn-
ised word or phrase. This can be done by searching for the
string in the knowledge base.

In the preferred embodiment this search for the string in the
knowledge base is done with two checks.

The first to see if it is labelled as being part of a translation
template using the query:
query
[<possible substring>] [is part of the translation] a

The second check is done with the query:
query
[<possible substring>] [is a denotational string pertaining to]

a

This is implemented with a generator which merges all the
relations implementing denotational strings,

[generator.denatationall @semscript.com]
generator y%

1 [is an instance of] [english denotational relation]
x$ry%

=>

x$ [is a denotational string pertaining to] y% *

All the relations for denotational strings are members of
the class [english denotational relation] so this query will
recognise any denotational string by answering yes.

Ifitis recognised, it recursively calls itself with the remain-
der of the string and adds the scanned string to the start of each
sequence returned. Recognised strings can be hashed to save
having to check whether they are recognised more than once.

For this example, one of the recognised sequences returned
by this function will be:

“What is” “the capital of” “France”

“the capital of” will then be textually substituted into the
header query for a and “France” will then be textually
substituted into the query for b.

The top query will then read:

query ¢,d
[“the capital of”] [is an attribute form of] ¢
[“France”] [can denote] d

which when run will return the results o=[is the capital city of]
and d=[the nation state France].

[is an attribute form of] is a translation relation that describes
how English phrases can express a relation in a function sort
of way. For example, “the spouse of”, “the mother of”, “a
child of”, etc.

10

20

25

30

35

40

45

50

55

60

52

[can denote] is the translation relation that relates singular
nouns (or noun phrases) to an object name within the knowl-
edge representation system.

The query is then run and the results will then be substi-
tuted into the bottom query as the correct translation of the
question:

query e
[current time] [applies to] now

f: e [is the capital city of] [the nation state france]
f [applies at timepoint] now

This query is the correct (and only) translation of the natural
language question.

This query is then executed as follows:

The first line will result in a smart generator call to a tool
which will give a single value to the variable now.

The second line will be found in the static database with e
given the value [the french city of paris] and f given its fact
name.

The final line will finally be verified by using the smart
generator which infers the truth of [applies at timepoint]
statements from [applies for timeperiod] statements found in
the static database. The final line will be verified as true if the
current time lies within it (or at least one of them if more than
one time period is found).

The engine will then answer the natural language question
with the answer “The French city of Paris”

FIG. 9 shows the method of translating an item of natural
language using translation templates.

Step 902 is to break the natural language question into
sequences of recognised substrings. Step 904 checks to see
whether there are any unprocessed sequences left, and ends
the process if there are no more (or none to start with). If there
are sequences still to be examined, the next one is selected
(step 906) and all translation templates that might translate
this sequence are then looked up (step 908).

Step 910 checks to see whether any of these possible trans-
lation templates remain and returns to step 904 if not, other-
wise it proceeds to step 912 where the next unprocessed
translation template is selected. Next, the current translation
template is compared with the current sequence of strings
(step 914), and if they do not match then control is passed
back to step 910. (These steps ensure that every sequence is
matched with every possible translation template that might
match.) If they do match, step 916 is then done, and substi-
tutions are created between the variables in the template
representing unspecified strings and the strings that actually
appear in the sequence. These string objects are substituted
for those variables in the header query. Step 918 which
executes the query is then done. Step 920 sees whether any
results from this query are still to be processed and if so it
selects the next set (step 922) and substitutes the results into
the translation query to produce a possible translation (step
924). If not, it returns control to step 910.

In various embodiments, question templates can also con-
tain fields which helps the system translate the question or
fact assertion back into natural language. Translating back
into natural language has value in demonstrating to the user
that the system has correctly understood the question asked.
In cases where the question is ambiguous, it also has value in
enabling the system to list various alternative understandings
of the question asked so that the user can select the one
intended.

In the preferred embodiment the field is a sequence of
natural language strings and variables resolved by the queries

US 9,098,492 B2

53

in the template. To translate the question back into natural
language the system translates the objects into natural lan-
guage and outputs the sequence of pre-determined strings and
translations to generate a translation of the entire question. In
the preferred embodiment, the variables are all generated by
a further query (equery) which generates string objects from
variables and objects resolved with the other queries in the
translation. These string objects are the ones referenced in the
translation sequence.

An example of a query with these further fields is the
following:

“does” a “have a husband”
query X

a [can denote] x

X [is an instance of] [human being]
query

[current time] [applies to] now
t: X [is married to] y

t [applies at timepoint] now
[male] [applies to] y

query t

t [uniquely translates as] x

“Does” t “have a current husband?”

Ifthe question asked was “Does Madonna have a husband”, a
match would be found with the first pattern with variable a set
to the string “Madonna”. The next query would be executed
and as a consequence the variable x would be set to the object
denoting Madonna the person. To translate the question back
into English, the query in the fourth field would be executed
giving a unique recognition string of Madonna, perhaps
“Madonna Louise Ciccone, the famous singer of popular
music” and the final re-translation of the question would be
“Does Madonna Louise Ciccone the famous singer of popular
music have a current husband?”

2.6.7 Resolving Ambiguity

Ambiguity is where the natural language has more than one
potential translation. Ambiguity can sometimes be resolved
from other information in the knowledge base. As used herein
“semantic constraint knowledge” is knowledge about the
meaning/use of objects in the knowledge base which limits
how they are used by any entity that understands the object’s
meaning.

Semantic constraint knowledge can be used to distinguish
between translations which are likely to have been intended
and those which are unlikely.

Examples of semantic constraint knowledge now follow:
2.6.7.1 Left and Right Classes of a Relation

The left and right classes are properties of arelation present
in some embodiments including the preferred embodiment.
Left and right classes are a form of semantic constraint
knowledge used in the preferred embodiment.

They are stored using facts of the form:

[<class>] [is the left class of] [<relation>]
[<class>] [is the right class of] [<relation>]

e.g.

[geographic area] [is the left class of] [is the birthplace of]
[human being] [is the right class of] [is the birthplace of]

5

10

15

20

25

30

35

40

45

50

55

60

65

54

This knowledge conveys the largest class of objects that can
reasonably be used with this relation. To put it another way,
any intelligent entity wanting to enquire about the existence
or non-existence of a relation would not do so with objects
outside these classes. (As this is the case, the issue of whether
the relation can apply to objects outside these classes is
believed to be moot in practical use.)

As an example of how this semantic constraint knowledge
can be used, in the above “What is the capital of France?”
example, the initial query only returned one pair of results and
the question could not be made to match any other translation
template.

However, if the initial query had produced several results:
for example if “France” could be resolved to the name of a
person, the translation would be rejected by using facts about
the right class of [is the capital city of], e.g. the following fact
(shown without a name) is in the knowledge base:
[geographical area] [is the right class of] [is the capital of]

All the queries generated by the translation process can be
subjected to type checks using such knowledge. Any line with
the relation [is the capital of] would then be subjected to
checks on its right object. If it turned out that it was not an
instance of [geographical area] the translation would be
rejected.

If more than one translation remains then the engine can
resolve ambiguity as a last resort by asking the user for more
information. It does this by translating the queries back into
English and listing them on the screen. The user then selects
the query that he or she intended to ask. Although individual
words and phrases translating into multiple objects are a
common cause of ambiguity, different translations may also
come from different translation templates.

[is the right class of] and [is the left class of] are permanent
relations. Furthermore, in the preferred embodiment the
classes they indicate are always permanent classes. This sim-
plifies the ambiguity resolution as there is no need for tem-
poral partners.

2.6.7.2 Semantic Scope of Attributes

Another related way that interpretations can be eliminated
that is present in certain embodiments is to define a class
which defines the scope of an attribute.

Attributes are shown to apply to objects with facts of the
form:

[<attribute>] [applies to] [<object>]
e.g.
[unmarried] [applies to] [james buchanan]

Like left and right classes of a relation, attributes can also
have a class associated with them.

[human being] [defines the scope of] [unmarried]

Facts of this form are an additional example of semantic
constraint knowledge.

This class is prompted for in the add_object process (see
section 2.9.7.1) when the object being added is an instance of
the class [attribute].

Like left and right classes of a relation, the scope of an
attribute is defined by the semantics of the concept the
attribute represents and thus provides a sanity check on any
interpretation where the object is outside this scope.

For example, when translating the question “Is Madonna
single?” (see FIG. 2) the question translation routine finds
that [“madonna”] can denote two objects in the knowledge
base, the singer and [the 1990 movie madonnal.

Both get translated into queries but the second translation
contains the line:

f: [unmarried] [applies to] [the 1990 movie madonna]

As [human being] is the scope of the [unmarried] attribute

and as the system can establish via a query that [the 1990

US 9,098,492 B2

55

movie madonna] is not a human being, this interpretation can
be eliminated as clearly not intended.

The word “single” can be automatically disambiguated
here as well. The knowledge base contains:

[“single™] [can denote] [unmarried]
[“single™] [can denote] [single track music recording]

so queries can also be generated with lines starting:
[single track music recording] [applies to] . . .
which can be eliminated by the fact that the left class of
[applies to] is [attribute] and [single track music recording] is
a [class] and not an attribute.

Eliminations like this can also be efficiently done in the
header query. For example, the template for this question
could be:

“ig”ab

query X,y

a [can denote] x

b [can denote] y

y [is an instance of] [attribute]
query

[current time] [applies to] now
t:y [applies to] x

t [applies at timepoint] now

With the y [is an instance of] [attribute] line, the header query
will eliminate the [single track music recording] interpreta-
tion without semantic constraint knowledge even being
needed.

2.6.7.3 Method for Resolving Ambiguity

FIG. 10 shows a process of testing a single translation to
see whether it can be rejected. Step 1002 sees whether there
are any remaining lines in the current translation that have not
yet been tested. If not, the translation is declared OK (step
1004) and the process ends.

If there are remaining lines, the next unchecked line is
selected (step 1006) and a check is made to see whether the
relation in the line is a variable or a known object (step 1008).
If it is a variable, control is passed back to step 1002, other-
wise a check is made to see whether the left object is named
(step 1010). If yes, the knowledge base is consulted to see
whether the allowed classes of the relation determined by [is
the left class of] facts contradict the actual class of the left
object (step 1012). If they do the translation is rejected (step
1014) and the process ends. If the information is not there, or
if the class is OK, control passes to step 1016 where a check
is made to see if the right object is named. If the right object
is named a check is made to see whether the query line is a test
of an attribute against an object (step 1018). If it is, a check is
made to see whether the object is outside the scope of the
attribute (step 1020) and the query is rejected if so. If it isn’t
a check is made on the right object against the right class of
the relation (step 1022) and again the query is rejected if it
fails (1014). If all the checks are passed, control passes back
to step 1002.

A process for dealing with the results of translation, includ-
ing rejecting ones that can be rejected, presenting possibilities
onthe display, and using a fall-back strategy (see section2.6.8
below) is illustrated in FIG. 11. Step 1102 obtains a list of
possible translations (possibly using the process illustrated in
FIG. 9 described above). Step 1104 tests to see whether there
are any remaining translations and if there are not it advances

10

20

25

30

35

40

45

55

60

56

to step 1112. If there are, the next one is selected (step 1106),
and it is tested to see whether it can be rejected (step 1108).
This step perhaps uses the process described in FIG. 10 as
explained above. If it can be rejected it is deleted (step 1110)
and control returns to step 1104.

Once all the translations have been examined it proceeds to
step 1112 which tests to see how many translations remain. If
more than one translation remains step 1114 is done and all
the remaining translations are displayed on screen, and the
user is asked to select the intended one (an example being
illustrated in FI1G. 12 and described in more detail below). If
exactly one translation remains, it is assumed to be correct
and presented as the answer (step 1116). If no translations
remain, step 1118 is done, in which the system confesses that
it was unable to translate the question and uses a fall-back
strategy. This fall-back is described in more detail in section
2.6.8 below.

As anexample, FIG. 12 illustrates how the question “When
was Paris released?” would be dealt with by one embodiment
of the present invention.

The system found eight translations for the string “paris”
and created queries for seven of them. The one involving the
city in France was rejected by the translation template
because the initial query asked for the translation to be an
[animated visual medium] (but it might also have been
rejected later by checks using the semantic constrain knowl-
edge that the left class for [was published at timepoint] has to
be an [animated visual medium]). Because more than one
possible translation remained, the possible results were trans-
lated back into English and presented to the user to select
from (screen 1202). The user selected one of them by clicking
on the link and the result of that selection is the corresponding
query being executed and the result displayed (screen 1204).
This is achieved by encoding the query as a string and passing
it as a parameter in the URL using HTML GET protocol.

In contrast, with the question “Is Paris the capital of
France?” (illustrated in 1206), things are different. Again,
many interpretations of the string “paris™ are tried and this
time the translation template does not reject any of them
because it is very general and works for all relations. How-
ever, this time all the non-geographical interpretations are
rejected by analyzing the queries using the semantic con-
straint [is the right class] and [is the left class] facts associated
with [is the capital of]. Here all queries containing lines
similar to:

t: [the 1997 movie Paris] [is the capital of] [frame]

are rejected because the engine finds that:

[geographical area] [is the left class of] [is the capital of]

and proves that:

[the 1997 movie Paris] ~[is an instance of] [geographical
area)

The one remaining query is the one asking whether Paris
the city is the capital of France, and this one is not rejected, so
the query can run instantly without prompting the user, as
only one interpretation remains. As a result the system
instantly answers the question and displays the result (screen
1206). This instant response to the question is also step 1116
in FIG. 11.
2.6.7.4 Rare Possibilities

A refinement found in some embodiments is to track the
frequency of use of differing objects corresponding to a single
denotational string and use this data to suppress very rare
interpretations. For example, a contemporary non-famous
person named “Abraham Lincoln” would be entitled to have
a fact saying that his name can denote him. However, it is very
likely that anyone using his name is trying to denote the
former US President and being offered a choice every time in

US 9,098,492 B2

57

such circumstances could cause irritation to users. Avoiding
this can be achieved by associating the denotational possibili-
ties (string and object) with each translation used and logging
the selection when a user selects from a list of possibilities.
When one denotational possibility is noticed to be signifi-
cantly less commonly used than the others (e.g. if it is the
intended selection less than one in a hundred times) the
embodiment can choose to suppress it completely or relegate
it to a list behind a link (e.g. saying “click here for other less
common interpretations”).

2.6.7.5 Identical Answers
A further refinement extends this disambiguation strategy

further by seeing whether the answers to the various questions

are the same before prompting the user to choose between
them. Ifthe answers are all the same, the answer is then output
instead of asking the user to choose the intended question.

With only a relatively small number of possible interpreta-

tions a further embodiment may output the answer to each

interpretation after each interpretation instead of letting the
user select first.

Two questions having the same answer may happen by
coincidence when (say) the objects being identified have the
same answer. For example, a question asking the nationality
of a person where the name entered denotes two different
people, need not ask the user which of these two people is
meant if they both have the same nationality. Another
example is when the question is parsed in two distinct but
nevertheless semantically similar ways. For example, the
phrase “british city” within a question may be parsed as
identifying a specific subclass of cities [british city] or it may
be parsed as identifying members of the class [city]| with the
attribute [british]. Although distinct in terms of semantic rep-
resentation both questions are the same and will always pro-
duce the same answer.
2.6.7.6 Removing Duplicates/Equality Testing

An additional refinement present in some embodiments is
to eliminate duplicate queries. Multiple translation templates
may produce identical queries from a different way of view-
ing the translation. To eliminate the duplicates when this
happens involves a test for equality.

Testing queries for equality can be done with the following
steps:

(1) Sorting the lines of the query into a pre-determined order
(unaffected by variable names). This can be achieved by
assigning all variable names a fixed value and sorting the
lines into alphabetical order.

(2) Normalising variable names. This can simply be done by
renaming the variables in the order they appear in the
sorted lines taking variable names from a pre-determined
list. e.g. v1,v2, v3 etc. A substitution table is maintained so
that variables that have already been renamed can have
their new name substituted in. The header variables also
need looking up and substituting from this table.

Equality is then a matter of testing for:

An identical sequence of lines.

and

The same set of header variables.

Testing equality of FACTLISTs (see below) can also done
by the above method but with no variables (i.e. just sorting the
facts into order and testing for equality).

2.6.8 Natural Language Translation Fall-Back Strategy
If the engine fails to translate the natural language text

entered by the user it can do better than simply say “Sorry”. In

an example embodiment, the program lists all the sub-strings
of the question that it has recognised. This information gives

10

15

20

25

30

35

40

45

50

55

60

58

feedback to the user about how close the system came to
understanding the question and which bits were not under-
stood.

Clicking on any of the strings that were recognised gives a
profile screen (see section 2.7) for the string object. The string
profile screen includes any objects that are denoted by the
string. Clicking on those gives a profile screen for the object.
It is possible that a standard profile for a recognised object
will answer the question that the user asked even though the
question was not fully understood.

Other embodiments, including the preferred embodiment,
use web-searching as part of the fall-back strategy (as
described in section 2.14).

Other embodiments may provide a link to the method for
adding a new translation template (see section 2.9.16). By
doing this the user has an opportunity to ensure that his or her
question and questions of a similar format can be answered in
the future.

2.6.9 Fact Translation to Natural Language

The preferred embodiment can often translate assertions of
fact using a method almost identical to the question transla-
tion described above in section 2.5.

This is achieved by the creation of an entity called a
FACTLIST which looks a lot like a query but with no vari-
ables. A FACTLIST is simply a list of assertions of fact.

To translate assertions from natural language the template
simply has a FACTLIST as the result of the translation instead
of'a query.

Ifa fact generated by the template is transient and there are
no temporal partners, the preferred embodiment will then also
prompt for when the fact is true.

If the translation produces temporal partners or the fact is
permanent or true-now, the system only has to prompt for the
source and confirmation.

The use of translation templates to translate both questions
and fact assertions means that in the preferred embodiment,
facts can be asserted directly from the main prompt on the
site.

The ambiguity resolution techniques described above can
also apply to FACTLISTs as semantic constraint knowledge
applies to facts as well as querylines. A FACTLIST can be
looked at as structurally similar to a truth query.

An example translation template for fact assertions is:

query attribute, thing

a [can denote] thing

b [can denote] attribute

attribute [is an instance of] [attribute]
factlist

attribute [applies to] thing

For more details of adding facts to the knowledge base see
section 2.9.10.
2.6.10 Query Translation to Natural Language

The preferred embodiment provides the user with an
unambiguous retranslation of their question back into natural
language which is done without referencing the original ques-
tion provided by the user.

As seen above this enables the user to have confidence that
their question has been correctly understood. In the case that
there are several interpretations of their question, it also
enables the user to select the intended one.

As described above this can be achieved by having addi-
tional fields in the translation template that provides a query

US 9,098,492 B2

59

and a template into which the query results are inserted to
produce an unambiguous retranslation.

Various other embodiments are also operable to translate a
query into natural language if these fields are absent or if the
query came from somewhere other than being the output of
the translation system.

This can be achieved with a combination of special case
queries which have a fixed format translation in combination
with a fall-back translation which is used when the query does
not match any of the special cases.

For example, many queries are of the form:

query

[current time] [applies to] t

f: [<known left object>] [<known relation>] [<known right object>]
f [applies at timepoint] t

which can be recognised and translated as:

“Determine whether <unique recognition string of known left
object> <unique recognition string of relation> <unique
recognition string of right object> at the current time?”
The unique recognition strings can be looked up with a

query.

Similar special cases can be generated with either the left
object or right object unknown or when the timepoint is
specified. When the left and right objects are unknown vari-
ous embodiments can refine the language by checking the
[left unique] and [right unique] properties of the relation.
Other common patterns of queries can be translated by simi-
lar matching.

The fall-back translation can be used when the query
doesn’t match any of the checked-for patterns. It may be less
natural than a pre-determined translation but can still be
understandable. It can be implemented in some embodiments
by:

Determining the most specific likely class for each variable
in the query. This can be achieved by using the semantic
constraint knowledge to determine a class based on the
variable’s position within a query line and selecting the
smaller class if more than one is generated (distinct
classes would imply a query that cannot be answered).
The class will start as [object] (the root class).

Giving a unique name for each variable based on the
derived class, using numerical postfixes if the class name
isn’t unique (“human being 2” etc.).

Translating each line in turn using the unique recognition
strings for each known object and the variable names for
each variable. The first time the variable is referenced
using language such as “generate values for human
being 2 where . .. ”. In subsequent lines the language can
be of the form “Limit the values for human being 2 by
selecting only those which . . . ”.

Capturing the meaning of the presence of query variables
in the header with additional text mentioning the vari-
ables in the query header or giving language correspond-
ing to the meaning of a truth query if there are no header
variables.

2.7 Profile Generation
As used herein a “profile” is a collection of user-perceiv-

able information pertaining to a specific object represented

within the system. “Profile generation” is the facility for an
embodiment of the invention to generate profiles.

In the preferred embodiment the user perceivable informa-
tion is an information screen delivered as a web page. It is
commonly used when users wish to find out general informa-

5

10

15

20

25

30

35

40

45

50

55

60

65

60

tion about an object rather than something specific (where
they may choose to type a question instead).

The preferred embodiment also implements its profile gen-
eration system by the use of multiple profile templates. Profile
templates are data which describe the general form of a profile
and, in combination with knowledge extracted from the sys-
tem, enable the profile generation system to generate a profile
for a specific object.

In the preferred embodiment a translation template exists
which will translate a single denotational string of an object to
a specially formatted query starting “profile:”. Queries
matching this format are passed to the profile system for
rendering instead of to the query answering system, thereby
generating an information page. This enables users to see a
profile for an object just by typing a denotational string which
can denote that object.

So, for example, simply typing “Abraham Lincoln” as a
question will result in the translation profile:

[abraham lincoln] and the page can be immediately dis-
played.

The profile generation system of the preferred embodiment
includes the ability to generate a profile of an object showing
key information about the object in a standard form. Any
object within the system can be the subject of a profile,
including objects, classes, relations, facts etc.

The information shown about an object, and the format in
which it is displayed, is a consequence of the profile template
selected and the class the object belongs to: for example, a
profile of a human being might include information about
their date of birth and occupation, while a profile of a fact
might include information about when the fact was asserted
and by whom.

Profiles in the preferred embodiment can contain both
knowledge from the knowledge base (e.g. Abraham Lincoln’s
date of birth) and information about the knowledge base (e.g.
the history of people endorsing a fact). That is, even if the
implementation of the embodiment stores certain system spe-
cific information outside the static knowledge base the
embodiment can choose to display it in a profile.

The system also allows that the same class of object may
have multiple types of profile available for difterent purposes.
These different types of profile may be formatted in different
ways, and may also contain different information. For
example, the ‘employment’ profile of a human being might
show their current and previous occupations, while the ‘fam-
ily’ profile of the same human being may show their parents,
spouse and children.

In an alternative embodiment there may be a limit of one
profile type per class. This embodiment could still show
emphasised profiles in a similar fashion by adding classes to
accommodate multiple profiles. For example, the family pro-
file described above could be attached to a [human being with
family] class, essentially with the same members as [human
being].

Inthe preferred embodiment, the data about what informa-
tion is included in a particular profile and how it is formatted
is encapsulated in the template.

In the preferred web-based embodiment, profiles are out-
put as HTML for display to the user, but other embodiments
may include output of profile information in any perceivable
format, even including non-visual formats such as synthe-
sised speech.

FIG. 13 shows an example of the profile system in opera-
tion in the preferred embodiment. The object [abraham lin-
coln] is being profiled through several different profiles.

Screen 1302 shows him being profiled through a special
profile designed specifically for members of the class [us

US 9,098,492 B2

61

president] (current and former Presidents of the United
States). This is the narrowest class of which [abraham lincoln]
is a member and is the default if nothing else was specified.
This screen gives information specific to this class such as the
start and end dates of his term of office and his predecessor
and successors in the job.

Each profile screen contains a drop-down list of classes of
which the object is a member and which have one or more
profiles attached to them (1304). In screen 1306 the user has
switched the selection from “us president™ to “human being”
and is now being shown [abraham lincoln] through the default
[human being] profile. In this screen US president related
knowledge is absent but information common to all humans is
shown, including date of birth, place of birth and marital
status (the marital status fact is at death for deceased people
and the current time for live ones in this embodiment).

Where there is more than one profile available for a par-
ticular class, a second drop-down list enables the user to
navigate between profiles for a specific class (1308). In screen
1310, the user has selected the “family” profile for [human
being] and the system has responded with a screen emphasis-
ing Abraham Lincoln’s family members.

Finally in screen 1312 the user has selected the profile for
the class [physical object] of which [abraham lincoln] is also
a member. This screen contains knowledge pertaining to
physical objects such as his date of creation (date of birth in
his case) and mass. As [physical object] is too high up the
class tree to be a principal class, this profile also identifies the
principal class of the object being profiled (principal classes
are discussed in section 2.3.4.3).

FIG. 14 illustrates how the profile system can also display
knowledge stored outside the static knowledge base and how
profile screens can be linked together.

Screen 1402 shows a profile screen of a single fact in the
static knowledge base. It describes the fact (1403), giving
details of any temporal partners (or subject facts) with links,
gives access to user assessment (see section 2.10) by provid-
ing endorse (1404) and contradict (1406) buttons, gives the
status of the fact (1408) and provides a button to immediately
redo the system assessment (1409) (System assessment is
described in section 2.11). It also provides an endorsement/
contradiction history of the fact (1410).

Screen 1412 is a standard [human being] profile that could
be obtained by clicking on any of the links under [william
tunstall-pedoe] in screen 1402.

Screen 1414 is the [human being] profile with the emphasis
on their contribution to adding knowledge to the illustrated
embodiment. This subcategory of the [human being] template
is labelled “worldkb user”. It contains statistical information
about the number of facts reported, as well as listing recent
fact assertions and assessments by this user which can be
browsed by clicking on the link to open the relevant corre-
sponding profiles.

2.7.1 System Components

When a user requests a profile for an object, there are two
stages to the process:

Determine which profile template to use, based on the
object requested by the user together with optional
parameters.

Expand the details of the template to produce output for
display to the user

2.7.2 Determining which Profile Template to Use

In the preferred embodiment, the choice of profile template
is a function of a particular class that the object belongs to
(called the “profile class™) and a string (called the “profile

10

15

20

25

30

35

40

45

50

55

60

65

62

type”), both of which are optionally specified by the user. If
one or both of these parameters is unspecified, the behaviour
is as follows:
If the profile class is not specified explicitly, the system
finds the most specific class to which the object belongs
which has a profile template. This is achieved (in the preferred
embodiment) with the following steps shown in FIG. 15
Find a list of classes of which the object to be profiled is a
member (1502)

Discard any of these classes that do not have a profile
template associated with them (1504)

Find the narrowest (most specific) of this set of classes, i.e.
a class that doesn’t contain any other class in the set
(1506)

Typically this process will yield only one result, butif there
is more than one the system can prompt the user to choose
between these possibilities, or the system can choose auto-
matically based on some deterministic criteria (for example,
choosing the most frequently used profile class). Other
embodiments may attempt to determine which class has the
smallest number of elements.

For example, if the user requests a profile of Abraham
Lincoln, and there are profile templates available for the
classes [us president], [human being], and [physical object],
then the [us president] class will be used since this is the
narrowest class in the set.

If the profile type parameter is unspecified, the string
“default” is used.

Alternative embodiments may use a procedure for select-
ing a profile template that can be customised to suit a particu-
lar user.

Once a profile template has been selected, the template is
expanded to generate a profile screen to display to the user
(1508)

When a profile contains transient facts, it may be that the
facts in question do not have meaningful values at the current
time because the object in question no longer exists. The
preferred embodiment deals with this by showing a profile for
the last time at which the object existed (e.g. a dead person’s
date of death). Other embodiments may deal with this in
various ways, including prompting the user for a different
timepoint to generate data for, displaying a historical view of
all values of data over the course of the object’s lifetime, only
displaying values which are applicable at the current time, or
a combination of these techniques.

2.7.3 Expanding the Profile Template

In the preferred embodiment, profile templates are stored
as XML documents. The template can intersperse XHTML
nodes (which have their ordinary meanings regarding format-
ting content) with system-defined nodes (which have special
behaviour associated with them).

These system-defined nodes can contain arbitrary XML
data inside them (including XHTML nodes, other system-
defined nodes or character data) and can carry out a variety of
operations, including:

Displaying internal content verbatim

Performing processing on the internal content before dis-

playing

Performing conditional execution of internal content

Repeating internal content a (variable) number of times

Querying the knowledge base for information

Querying other data sources (e.g. a SQL database) for

information

These nodes can be combined with each other to carry out
arbitrarily complex operations.

US 9,098,492 B2

63

FIG. 16 shows the process of expanding the profile tem-
plate. At the beginning of this process, the profile template is
selected as described above (1602).
2.7.3.1 Stage 1: Parsing the Template

Since the template is well-formed XML, it can be parsed by
a number of third-party libraries into an abstract syntax tree,
which encapsulates the structure contained in the XML
(1604). In the preferred embodiment, the output of this parse
process is a tree structure where each node is represented by
an object. Each node object has an (ordered) array of refer-
ences to child node objects, and a single reference to a parent
object. Each node object can have an arbitrary list of param-
eters, extracted from the node attributes in the original XML
source, which can affect the output of the subsequent process-
ing step.

The preferred embodiment uses an object-oriented model
where each node object is an instance of a class document_
node, or some subclass. The class document_node provides a
method called render(), which can be overridden by child
classes to provide special behaviour for these nodes.

In order to distinguish between XHTML nodes (or other
XML nodes with no special behaviour in the context of tem-
plate expansion) and nodes that require special processing, a
namespace prefix is used. For the purposes of this document,
the prefix ‘tmpl’ will be used to identify nodes relevant to the
templating system, although any prefix could be used so long
as it is consistently applied.
2.7.3.2 Stage 2: Expanding the Template

Atthis stage processing proceeds through the tree structure
in a depth-first recursive manner, at each point executing the
render() method on the node object (1606). In general, node
objects will perform the render() method on each of their
children in turn, although particular types of node object may
override this behaviour.

For a particular node, the results of each of these render
functions are combined together (in a way that may depend on
the type of the node in question) and returned to the caller. The
value returned by the root node of the parse tree is the HTML
document to be displayed to the user.

Therefore simply calling the render() method on the root
node of the tree implicitly causes all the nodes to be rendered
recursively, and the result of rendering the root node is the
whole rendered document to display to the user (1608).
2.7.3.3 Example Template Expansion

FIG. 17 shows an example template expansion. Consider
the example template 1702. This includes two query objects
(1708 and 1710), which fetch information from the knowl-
edge base. It also includes two value-of nodes (1712 and
1714), which identify places within the mark-up where the
results of these queries will be embedded.

If the user requests a profile of an object using this tem-
plate, the template expansion process is carried out using the
specified object (1704). The output will be HTML suitable for
displaying to the user, with the corresponding values
expanded (1706).

2.7.4 Template Node Class Hierarchy
2.7.4.1 Document_Node

All other document nodes inherit from the document_node
class. When parsing the template, all nodes that don’t have
special behaviour associated with them (including all
XHTML nodes) are created as instances of document_node.

On rendering, a document_node object concatenates and
returns the following:

An opening XML tag, the name of which is the tag name of

the corresponding node in the template

Attributes on the XML tag, which are just the attributes

taken from the XML node in the template

5

15

20

40

45

50

55

65

64

Theresult of rendering any child nodes that are instances of

attribute_node, added as attributes to the attribute list

The result of rendering each of the child nodes that are not

instances of attribute_node, in order, concatenated
together

A corresponding closing XML tag

Note that if a template were processed that consisted
entirely of XHTML nodes, they would all be instantiated as
document_node objects, and the result of this rendering pro-
cess would be isomorphic to the original template document.
2.7.4.2 Character_Data_Node (Extends Document_Node)

The character_datanode represents character data from the
XML document. Identifying which parts of the template
XML to treat as character data is the job of the XML parser.

Nodes of this type are forbidden to have any child nodes
(attempting to add a child node throws an exception). During
the parse phase, the character data is copied from the template
document.

Within the character data, values prefixed with a ‘$” symbol
indicate special variables, which may be expanded by the
profile system to allow information about the environment to
be passed in to the profile. In particular, the variable ‘$object’
will bereplaced with the ID of the object that is being profiled,
which can be used both in knowledge base queries and in text
to be displayed to the user. This is seen in FIG. 17 where
‘Sobject’ is expanded to the string [sean connery] during
profile expansion.

On rendering, the content of the character data node is
returned to the caller.
2.7.4.3 Query_Node (Extends Document_Node)

A query_node can carry out a query to the knowledge base
or to any other source of data (e.g. SQL database) accessible
by the system on which the template expansion is executing.
A query_node object is instantiated when a tmpl:query node
is encountered in the source template.

In the preferred embodiment, this query is conceptually
carried out when the query_node is first encountered (though
execution can in fact be delayed for optimization purposes).

Alternative embodiments allow the parameters of the
query to be varied based on the expansion of other nodes in
the document.
2.7.4.4 Tterator_Controlled_Node (Extends
Node)

This is an abstract class that is used to provide common
behaviour to several other node classes. An iterator is a
pointer that runs through values in a result set and executes
other nodes for each value. A class that inherits from iterator_
controlled_node is one that will vary its behaviour depending
on the presence or otherwise of an iterator that can control it.

The iterator_controlled_node class has an abstract method
find_controlling_iterator, which implements the logic for
searching through the page hierarchy for an iterator that con-
trols the output of this node.
2.7.4.5 Value_of Node (Extends Iterator_Controlled_Node)

An instance of the value_of node class is generated by a
tmpl:value-of node in the source XML.. It is forbidden to have
any child elements.

When it is encountered, it selects a value from a result set
and returns this value as output, without any enclosing XML
tags. This node selects only one variable from a result set: this
variable is specified by the select attribute. The query from
which to select results is specified by the “query” attribute.

The value selected from the result set may be influenced by
a controlling iterator. A value_of node will regard another
node as a controlling iterator if it satisfies all of the following
conditions:

Document_

US 9,098,492 B2

65

The iterator is in the node hierarchy above the current node

The iterator is selecting from the same query as the current

node

The iterator is selecting the same result variable to the

current node

If'a controlling iterator is found, then the node requests the
current value of the select variable for the controlling iterator.

If no controlling iterator is found, the value_of'node selects
the value of the variable specified in the result set specified. If
there is more than one result in the specified result set, then it
will take the first result in this set (according to the default
ordering of this result set).
2.7.4.6 For_Fach_Node (Extends Iterator_Controlled_N-
ode)

The for_each_node object is generated from a tmpl:for-
each node in the source XML. It is an iterator that acts on a
result set from a query_node object.

In isolation, it will iterate over every value in the result set
of the specified query. A variable to select can also be speci-
fied, in which case the iterator ranges over distinct values of
this variable.

An instance of for_each_node can also itself be controlled
by an iterator, allowing for nested loops. A for_each_node
will regard another iterator as a controlling iterator if it satis-
fies the following conditions:

The iterator is in the node hierarchy above the current node

The iterator is selecting from the same query as the current

node

The iterator is selecting a different result variable to the

current node.

FIG. 18 shows part of an example template being trans-
formed. Consider the example template 1802.

This template is designed to produce a list of European
countries and cities within them, formatted as HTML. When
the template is processed, it draws from a data set (1804). A
sample data set showing a possible result of the “european_
cities” query (much reduced, for clarity) is shown at 1814.

For clarity, we shall refer to the for-each node on line 9
(1808) as iterator A, the one on line 12 (1810) as iterator B,
and the one on line 19 (1812) as iterator C.

When iterator A is rendered, it searches for a controlling
iterator and finds none. Therefore it uses the entire result set,
and iterates over distinct values of the variable “country”. It
renders all its child nodes once for each of these three values.

During the first iteration of processing the children of itera-
tor A, iterator B is encountered. This searches for a control-
ling iterator, and finds iterator A (note that iterator C is irrel-
evant, since it is not above it in the hierarchy). The current
value of iterator A is ‘Germany’, so iterator B filters the result
set to include only results where Country="Germany’. Itera-
tor B then executes its child nodes for both of these values.

The value-of node on line 13 finds iterator B as its control-
ling iterator, and displays the current value of this iterator
each time it is executed.

After these child nodes have been executed, iterator A then
carries out the same process with each of the remaining ele-
ments in its result set.

Tterator C has no controlling iterator, so it simply iterates
over all distinct values of the “City” variable. The value-of
node on line 20 is controlled by iterator C, and displays the
corresponding value each time it is executed.

Thus the overall effect of this template with the result set
specified is to produce the HTML output shown at 1806.
2.7.4.7 Attribute_Node (Extends Document_Node)

An attribute_node modifies an attribute on the parent node
it belongs to. It is generated by a tmpl: attribute node in the
template XML.

10

15

20

25

30

35

40

45

50

55

60

65

66

For example:

<tmpl:attribute name="src”>

http://

<tmpl:value-of query="image_ query” select="image_ url” />
</tmpl:attribute>

In this construction, the attribute_node first renders all its
child nodes and concatenates the result. First, the character_
data node corresponding to the string “http://” is rendered,
and then the value_ofnode is rendered (fetching a result from
the specified query). These two results are concatenated (to
produce a valid URL) and returned to the node. The
 node sets the resultant URL string as an attribute (with
the name “src”) on the node when it produces the opening
XML tag. Therefore, the output might look like this:

2.7.4.8 If Node (Extends Document_Node)

An instance of if node is created in response to a tmpl:if
node in the template source. The if node allows a condition to
be specified. When the if node is rendered the condition is
evaluated, and if it evaluates to true the content of the child
nodes is included, otherwise the child nodes are ignored.
2.7.4.9 Choose_Node (Extends Document_Node)

An instance of choose_node is created in response to a
tmpl:choose node in the template source. It acts similarly to a
switch statement in C, i.e. it conditionally executes one of
several branches depending on which condition is satisfied.
The choose_node expects its children to be of type when_
node or otherwise_node, and will execute the first one in the
list for which the corresponding condition is satisfied.
2.7.4.10 When_Node (Extends Document_Node)

A when_node has a condition attached to it, which has to
evaluate to true in order for the parent choose_node to execute
it. The condition attached to a when_node may be an arbi-
trarily complex Boolean expression, and may include the
following types of operations (among others):

fetching results from query_node objects

fetching the number of results in a query_node object

checking whether a query_node object returned true or

false

comparing strings or numbers for equality

combining expressions with Boolean AND, OR and NOT
2.7.4.11 Otherwise_Node (Extends Document_Node)

This node is equivalent to a when_node whose condition
always evaluates to true. This has the effect that the branch
below this node will be executed if and only if none of the
previous when_node conditions evaluates to true.
2.7.4.12 Macro_Node (Extends Document_Node)

A macro_node defines a section of node tree that can be
repeated later on in the document with certain parameter
values expanded. The “name” attribute defines a name that
will be used to denote a call to the macro later on. The
“params” attribute is a comma-separated list of parameters
that will be made available when invoking the macro later on.

Once the macro has been defined, it can be invoked by a
node <tmpl:macro-name param1="“valuel”
param2="“value2”’>, which will be replaced in the parse tree
by a copy of the nodes within the original macro node, with all
variables replaced by their specified values.

2.8 User Authentication

Although querying the system can be done anonymously
(e.g. profile screen and answering natural language ques-

US 9,098,492 B2

67

tions), the preferred embodiment requires the system to know
who is using the knowledge base when changes to the knowl-
edge base are asserted (e.g. addition of knowledge or user
assessment).

Many schemes already exist for authenticating a user of a
computer system many of which should be readily applicable
to various embodiments of the present invention. In most
systems where users authenticate themselves, they log on
with a local identifier (i.e. a “username™) and then type a
secret password known only to that user.

One embodiment of the present invention uses a local
identifier for users in similar fashion. However, in the pre-
ferred embodiment, the real-world identifiers within the sys-
tem are used. Other embodiments combine both schemes
allowing authentication with local user entities and real enti-
ties and/or a subsequent step of linking the local entities to a
real-world id.

The process of authentication in this embodiment is illus-
trated in FIG. 19. In order to log on to the system the user must
first assert his/her real name, identifying him/herself in the
same way that that any other object is identified (step 1902—
the “select_object” process with [human being] as a param-
eter, described in section 2.9.6). Once the system has identi-
fied which entity is meant, the process checks to see whether
that entity has an associated password (step 1904). If a pass-
word exists, the user then authenticates him/herself with that
password (step 1906). The system associates the user’s real-
world identifier with that session of interaction with the sys-
tem. The real world identifier is the same one as identifies the
person within the knowledge base.

In an example authentication interaction with the system,
the system first prompts the user to say who he/she is (step
1902). The user responds by entering his/her name (e.g.
“Michael Smith”). The system then looks up this natural
language string in the knowledge base [“michael smith”] to
see which entities it could denote. If it only denotes one entity,
the system moves immediately on to prompting for a pass-
word (step 1906). If two or more entities in the system are
denoted by this string, the system lists the unique recognition
strings for these entities and asks the user to select which
entity he/she is (e.g. “Are you (1) Michael James Smith, date
of'birth 29 Jan. 1969; (2) Michael R. S. Smith, the children’s
book author”). (See section 2.3.2.1 on unique recognition
strings.) This screen also has a link to follow to add a new
entity if none of the alternatives are correct (see section
2.9.7.1). In the preferred embodiment, the user can also short-
cut any ambiguity by entering the internal object name in
square brackets (e.g. [michael james smith 32]). The square
brackets show that he/she is entering an internal name and not
a natural language name. The password entered by the user is
checked for validity (step 1908), and if invalid, another oppor-
tunity given to enter the correct password (step 1910).

If the entity trying to log on to the system is not present,
he/she is first taken through the process of adding him/herself
as an object to the system using the normal object addition
sequence of screens/prompts (see section 2.9.7.1). In the pre-
ferred embodiment this is the one situation where an unau-
thenticated user entity is allowed to add knowledge. The
knowledge asserted is labelled as coming from the entity
added. After adding him/herself to the system, a password is
prompted for (twice to guard against the possibility of
mistyping) to be associated with this entity and used for
authentication in the future (step 1912). The password
entered by the user should be checked for suitability (step
1914), and if unsuitable an opportunity given to enter a better

10

15

20

25

30

40

45

50

68

password (step 1916). The password created by the user is
then associated with the entity in the knowledge base (step
1918).

Once the password has been entered, the user entity can be
logged in (step 1920). A check is then performed to see
whether or not the user is a new addition to the knowledge
base (step 1922). If the entity had to be added as a new object,
his/her user rank and the time when he/she became a user of
the knowledge base are asserted (step 1924). (Embodiments
without a system of user ranks would omit this last step.) It is
useful to request core facts about a new user at this stage (step
1926—the “add_corefacts™ process, described in section
2.9.11.1). In an alternative embodiment these core facts could
be gathered during the process of adding the entity as a new
object.

When the entity denoted exists but no authentication infor-
mation is present we have a situation where the entity has
perhaps been added by someone else. The user must then
“claim” that entity as him/herself. After warnings about the
consequences of fraud, the system will prompt for a password
to be used in the future (step 1912). To limit the damage from
an impostor impersonating an individual in the knowledge
base, further checks would be undertaken in the preferred
embodiment such as contacting that individual independently
and/or using the true-identity establishment techniques
described below.

2.8.1 True-Identity Establishment

As used herein “true-identity establishment” is the system/
methods used to prove that the real-world identity being
asserted by a user as corresponding to him or herself truly is
him or herself.

True-identity establishment is used to limit the possibility
of people impersonating people whom they are not and is
used in various embodiments incorporating real identity user
authentication.

In various embodiments users can be given a temporary id
when they first interact with the system and that temporary id
is linked to their claimed identity. In this way, more than one
user could potentially be linked with a real identity until the
methods described herein allow one of them to win out. This
method also enables facts labelled with the temporary id of
someone who is later established to not be who they are
claiming, to be suppressed or to have a low weight associated
with their user assessments.

The following methods are used individually or in various
combinations of these or other techniques in various embodi-
ments. Each of these methods provides evidence that the user
is not impersonating someone whom they are not. Various
ways of combining this evidence into an overall belief are
possible. In the preferred embodiment each item of evidence
is given a score corresponding to an estimate of the quality of
the evidence and the user is labelled “true identity establish-
ment proven” once a total score threshold has been reached.
Other embodiments could use a probability based approach
where each item of evidence is incorporated into a probability
calculation giving an estimate of the chances they are truly
who they say they are.
2.8.1.1 Linking to Documentary Id

The first method is to allow people to validate themselves
using a real-world documentary id. The system can present
the user with a form containing a unique code number which
is proof that they have logged on and invite them to mail the
form with a copy of a real-world id such a driver’s license or
passport belonging to the person they are asserting they are.
The combination of the id document together with the code
number would be evidence that the user possessed the docu-
ment sent in and thus was who they asserted they were.

US 9,098,492 B2

69
2.8.1.2 Witnessing of System Use by Trusted User

An alternative method is to allow users to assert that they
have witnessed another user, whose real world identity they
can vouch for, log in to the system as that user. This assertion
would then tie the trust of the second user to the first. If the
user validating the second user was trusted or verified with
other methods this would be strong evidence that the second
user was who they were asserting.
2.8.1.3 Linking to Email Address and Linking Email Address
to Real-World Identity

Another source of information which can be used to pre-
vent individuals falsely claiming to be another person is by
use of email addresses.

Proving that a user has access to an email address can be
achieved by sending a coded link in response to a command
by them when logged into the embodiment. The coded link is
sent to the address asserted as belonging to the user entity and
the email asks for it to be clicked if they did try to interact with
the system and to ignore it otherwise. Once the website
receives the click it knows the person interacting with it is
likely to have access to the email address they specified. Such
a process links the email address to the user. If the email
address can also be linked to the real-world entity asserted, a
link between the person claiming to be that entity and the
entity itself can thus be proved.

This second link can be achieved in a variety of ways.

First, another user can authenticate themselves on the sys-
tem and then make a representation that they have communi-
cated with the real world entity using the named email
address. Real people often have long-term email interactions
with many other people. If one of them had established their
true identity within the embodiment and established a level of
trust, an assertion by them that this email address is linked to
this real-world identity would be strong evidence that the user
is who they say they are.

Secondly, the domain on which the email address is based
may belong to the entity or another entity closely associated
with the entity. For example, the domain may house a website
which is recognised as the official website of the person or
their employer. Representations by trusted users that this is
the case can also be used to infer the link between the real
world person and their email address.

2.8.2 Non-Human Real-World IDs

Most commonly, real-world identifiers linked to users will
denote human beings—i.e. the actual person who is logging
in. However, other entities which are considered capable of
asserting knowledge can also be supported by various
embodiments. For example, an identifier which denotes a
business can also be used. The business would be responsible
for limiting the authentication method (e.g. knowledge of the
password) to people to whom it grants the right to represent
the business in asserting knowledge. Within the invention,
knowledge so asserted would be labelled as being asserted by
the business. The methods described herein for true-identity
establishment can be extended to non-human identities in
similar fashion.

2.8.3 Tailoring the System to the User

By authenticating users, various aspects and behaviour of
the embodiment can be tailored to the user’s preferences.
Examples include:
2.8.3.1 Local Denotational Strings

By knowing who the user is, certain denotational strings
can be translated appropriately. One example of this is that the
translation routines can parse words such as “my”” and “I” and
successfully infer denotational facts relating to the user entity
as a result.

10

25

30

40

45

70

2.8.3.2 Privacy Management

A further advantage is in managing the privacy of users.
Various embodiments can allow an authenticated user to con-
figure various aspects of what personal knowledge is pub-
lished for privacy and other reasons. This can be done if that
user has authenticated themselves. For example, with instruc-
tions from an authenticated user, facts of the form, [email
address: [joesmith571@hotmail.com] [is an email address
of] [joe smith] could be suppressed or only published to
authenticated friends of [joe smith] according to the policies
and selections of the user.

2.8.4 Authentication for Third-Party Systems

Once a user has established their real-world identity vari-
ous embodiments can provide an authentication service to
third party systems to prove the real-world identity associated
with the user to other systems.

One embodiment could use public key cryptography to
allow the user to authenticate themselves and then sign a
message with its private key, transmitted to the third party
machine which proves this. The signed message can contain
data provided by the third party machine relating to this
session. The implementation details of various public key
systems and methods are widely known and need not be
repeated here.

In an alternative embodiment, Needham-Schroeder proto-
col is used with the embodiment acting as the authentication
server. The details of Needham-Schroeder protocol have been
widely published elsewhere and need not be repeated here.

2.9 Knowledge Addition

Knowledge addition refers to the techniques by which
knowledge may be added to the system by users.

As the preferred embodiment is directed towards general
internet users adding to the system, there is no guarantee that
the knowledge being added is correct or not added mali-
ciously. Furthermore, most of these general internet users will
not be technical or familiar with the underlying technology.

The preferred embodiment is designed to enable almost
everything needed to make the system produce and display
knowledge to be added to by general users including the
addition of individual objects, relations, classes and
attributes; the assertion of facts; and the addition of profile
templates, generators, tools and translation templates.

For object addition and fact assertion the preferred embodi-
ment uses a natural-language based, interrogative approach,
interacting with the user by asking natural language questions
and obtaining input from the user in response, often in an
extended sequence. i.e. The knowledge addition subsystem
can be considered in various embodiments as a natural lan-
guage interrogation system designed to collect real-world
knowledge in structured form from human users for addition
to the static knowledge base.

2.9.1 Capturing Sources of Knowledge

According to various embodiments including the preferred
embodiment, the source of all facts in the knowledge base
should be published and thus obtained during knowledge
addition. This allows other users to judge the veracity of a fact
by examining these sources. Ata minimum an identity for the
user adding the knowledge can be recorded. In some embodi-
ments this also enables automatic assessment to be done on
the likely veracity of the fact.

In the preferred embodiment there are two types of source
for a fact asserted by a user entity. The first category of source
is the user entity him/her/itself. In this case, when interacting
with the system, the user asserts that the knowledge asserted
is known to be true directly by the user (from the user’s own

US 9,098,492 B2

71

experience). An example of this would be something the user
has seen. In this case the user is the direct source of the
knowledge. Other valid reasons would be for facts which are
true by definition. Various embodiments could also enable a
user to label themselves as the source when there are numer-
ous independent sources, they are certain and they are happy
to take responsibility for the fact being true. The second
category is where the user asserts that the knowledge comes
from another named source. An example could be a fact
asserted by a book or a website or something communicated
to the user by another person. In this case the user is repre-
senting that the named source of the fact is the entity
described and this entity is the direct source of the knowledge.
Obtaining this information is a matter of prompting for it
during the user’s interaction with the system when the knowl-
edge is being asserted. A second source can be identified (and
if necessary added first) in the same way that any other real-
world entity is identified. The preferred embodiment also
prompts the user for an optional natural language statement of
the source of the fact. This string is also stored with the fact
and can be used for later assessing of the validity of the fact by
editors and/or others.

Where the source is a named web page, the preferred
embodiment takes and stores a local copy of the page. This is
because a web page stored on an external server can be
changed and the source may need to be referred to later. If that
source is cited again in a future assertion a comparison can be
made to see whether a second snapshot of the page should be
stored. In the preferred embodiment it is also legitimate to cite
the larger organisation as the source when a web page is used.
For example, a fact taken from an online page of the CIA
World Factbook could cite the Central Intelligence Agency as
the source.

Where it is known that a single source is responsible for all
pages below a certain web domain, this source in combination
can be inferred automatically in the preferred embodiment.
For example, the knowledge base can contain the fact [the cia]
[is responsible for content at] [domain name: [“www.
cia.gov”’]] which would allow any document copied from that
website to have [the cia] automatically assigned as the source.
If there is no fact that asserts a source for all pages in the
domain, the preferred embodiment asks the user to provide
one, giving the user the option to say that there isn’t one or that
there is one but only for the page cited. If the user asserts a
source for that page only, the source and document is associ-
ated with the fact. If the user asserts a source for that domain
an [is responsible for content at] fact is asserted.

Other embodiments have other categories of source that are
more indirect. For example, a user could assert that a book
asserts that another document asserts a fact. However, in the
preferred embodiment knowledge is limited to either knowl-
edge directly known by the user or asserted by a source
directly known to the user. Knowledge sources that are less
direct than this are considered too unreliable.

One reason why some embodiments include indirect
sources of knowledge is that it enables it to establish confi-
dence at least partly on the number of independent sources of
afact that appear to exist. For example, an embodiment which
labelled the source solely as the user asserting the fact could
give an incorrectly high degree of confidence if a magazine
made an assertion that was then repeated by a large number of
independent users who had read that magazine. In this case
the probability that the fact is incorrect is the probability that
the magazine was incorrect, not the probability that each of
the individual users was in error. With an indirect source
listed, a high degree of confidence can be inferred from the
number of users that the magazine did indeed assert this fact,

10

15

20

25

30

35

40

45

50

55

60

65

72

but the confidence in the fact itself can be assessed on the
basis that there was only a single source.

It is helpful to contrast this situation with a fact asserted
directly by a large number of users, e.g. the existence of an
event witnessed by ten people. In this case, the chance of the
fact being correct is the chance that each of these ten people
was mistaken or deliberately asserting false information. The
chance that this fact is incorrect is therefore substantially less
than the situation where each of these ten is reporting a fact
asserted by a single unreliable source.

A detailed method for capturing reporter, source and pos-
sibly document information in some embodiments is
described in section 2.9.13
2.9.2 Publication Protocols

The preferred embodiment uses a number of different pro-
tocols to determine when and if additions by users are used
widely. Other protocols can be used in alternative embodi-
ments.

These protocols include:
2.9.2.1 Immediate Publication

The “immediate publication” protocol can be used for the
addition of new objects, classes and relations and permanent
facts to the knowledge base, i.e. the creation of a new id and
various core facts about the object added.

Immediate publication is also used for most assertions of
facts (see section 2.9.10) though there are exceptions (see
section 2.11.2.2)

Knowledge added using this protocol is immediately avail-
able to all users of the system. If it should prove to be wrong,
user assessment (see section 2.12) enables the knowledge to
be rapidly suppressed/removed.

System assessment (see section 2.13) and fact pattern sup-
pression (see section 2.12) additionally help to prevent incor-
rect or abusive facts from appearing immediately (which
would otherwise be dealt with using this protocol).
2.9.2.2 Deferred Publication

Facts added using “deferred publication™ protocol are not
immediately published to any user other than the one who
asserted them. i.e. They are not used in the answering of
queries initiated by any user other than one labelled as the
user who asserted them. However, they are visible to users
who specifically request a list of such facts and these users can
use user assessment (see section 2.13) to endorse the fact.
Once a number of users have endorsed the fact it becomes
visible to all users. As a fact asserted a second or more time
counts as an endorsement of the original fact, itisn’t a require-
ment that the fact can only be endorsed by users who specifi-
cally request such a list.

In various embodiments, this is implemented by endorse-
ments and contradictions contributing to a total score for the
fact. The difference between facts published using deferred
publication and immediate publication is that with deferred
publication, the threshold is high enough that the assertion of
the fact by the original user is insufficient for the fact to
immediately be made visible.

Deferred publication can be used for certain sensitive facts
where an incorrect fact has a reasonable probability of being
asserted incorrectly or maliciously and where relying on
immediate publication and later suppression by user assess-
ment is insufficient.

The preferred embodiment uses deferred publication in
just a few special cases checked for in the system assessment
system when summing the endorsements and contradictions
generated by user assessment.

These cases include asserting a date of death for someone
who has a date of birth within a hundred years of the current
time and when the user is not related to the person whose date

US 9,098,492 B2

73

of'death is being asserted (checked for with a query). Another
example is the assertion of the end of a marriage (assertion of
atimeperiod with an ending timepoint that isn’t [iafter] when
a timeperiod ending [iafter]| is in the kb).

These examples are things which might be asserted mali-
ciously and which, as they can become true at any time,
cannot be dealt with easily using system assessment or fact
pattern suppression. They are also examples that could cause
distress if they were published incorrectly.
2.9.2.3 Editor Approval

Editor (or staff) approval is where a high ranking user must
first explicitly approve the item added before it is widely used.
In the preferred embodiment it is used for added generators,
tools, translation and profile templates.

Facts published under the deferred publication protocol
can also be essentially approved by high ranking users as they
can also visit the list of such facts and use user assessment to
make them appear. Being high ranking users, their user
assessment can be configured to result in immediate publica-
tion as the contribution to the sum that their endorsement
gives can be set to the total above the publication threshold in
all cases. The difference between editor approval and
deferred publication is that with the “editor approval” proto-
col, low ranked users cannot contribute in any way to the item
being published.
2.9.2.4 Trusted Users

A protocol used in some embodiments is to immediately
publish all facts asserted by trusted users.

In the preferred embodiment this will happen with facts
otherwise falling under the deferred publication protocol.
High ranking users have a lot to lose if they maliciously assert
false facts.
2.9.2.5 Asserter Publication

Even if the knowledge is not immediately published, vari-
ous embodiments can publish the suppressed knowledge to
the user who asserted it.

In an embodiment where the underlying knowledge repre-
sentation system is stored in a SQL database this can be
achieved by including a Boolean condition in the WHERE
clause where facts are retrieved if the original asserter of the
knowledge matches the user making the query (e.g.

“select . . . where asserting_user=‘[john smith 342]" . . .)
Embodiments with a separate user assessments table can do
this by linking tables.

In the preferred embodiment this is used for deferred pub-
lication of facts and additions of unapproved translation tem-
plates, generators and profile templates. Using this technique
in these latter cases allows users to upload and test the effects
of'what they are adding without immediately affecting others.
2.9.3 Documentor Strings

In the preferred embodiment a documentor string may be
prompted for during the creation of an object. These are
natural language descriptions of precisely what the object is,
designed to clearly describe the object to a user so there can be
no doubt as to its meaning and correct usage. Documentor
strings are particularly useful in describing class, relation,
and attribute objects, and consequently a documentor is
always requested (though not necessarily required) during the
creation of these types of object. Whether or not a documentor
string is requested during the creation of other types of object
depends on the complexity or abstract nature of the object
concerned, and the information about whether or not to
request one is held at the level of its principal class.

Unlike translation strings (see section 2.6.2 and 2.6.3 for
more details) the purpose of a documentor string is to com-
municate instructions to a user in natural language, rather
than to be used for translation purposes in automatic genera-

10

15

20

25

30

35

40

45

50

55

60

65

74

tions of natural language. Although most physical objects can
normally be identified beyond doubt by their unique recog-
nition string, some objects, particularly classes, relations, and
attributes, are more abstract and sometimes may not corre-
spond to a concept that the untrained user has come across
before. For example, one possible class is that of [animated
visual medium]—a class designed to cover all “movie-like”
entities including television programs, television adverts,
movies and web-based animations. As there is no English
term for this class, it needs to be explained carefully in a
documentor so that a user of the system can get a detailed
description when necessary. For example, it could be:

“This class contains all objects which are pre-recorded
displays of moving images, e.g. movies, television adverts,
flash animations. Members are not physical objects, i.e. the
sequence of images is identified, not the medium on which it
may be recorded.”

This documentor of a class would typically also be dis-
played on the profile screen (see section 2.7) describing the
class object, i.e. the profile screen for objects of class [class].
It can also be used whenever a user is using the class to add
knowledge as an extra check they are using it correctly.
2.9.4 Processes

As used herein the term “process” denotes an interactive,
automated method for communication between an embodi-
ment of the invention and a user. Most processes are designed
to elicit knowledge from that user.

In the preferred embodiment, this interrogative interaction
is achieved with a sequence of web pages containing form
elements, natural language prompts and explanations and
buttons. The user enters answers into the form elements and
selects appropriate buttons based on the prompts. Information
entered is then re-presented to the user ideally in a different
form for confirmation. The user then has the chance to con-
firm what they said or to return and try again. Finally the
knowledge obtained from the user is added to the static
knowledge base increasing the knowledge that is known
about.

Moreover, sometimes part of the process may involve
another process which in turn may require another process
etc. (termed herein as “sub-processes”). For example, when
adding a new object to the knowledge base, the user may be
prompted for the name of a class to which this object belongs.
It the user tries to specify a class which does not yet appear in
the system, they may choose to add the class, opening the
“add class” process as a sub-process. Once they have finished
adding the class, the process for adding the new object needs
to continue on from where it left off.

2.9.5 Implementation of Processes

In one embodiment, processes can be implemented simply
by coding the sequence of pages using a server-side scripting
language and opening a new browser window for each sub-
process. The user can then simply close the new browser
window when the sub-process is finished and return to the
original window, now able to continue.

In the preferred embodiment, the sub-process happens in a
continuous sequence of pages, optionally with a single page
introducing and terminating the sub-process with simple
messages like “We will now begin the process of adding this
class” and “thank you for adding this class, we will now return
you to where you left off”.

In the preferred embodiment all processes are coded using
PHP but other server side scripting languages are also suit-
able. (A great deal of information on implementing web
interactions in PHP and other server side scripting languages
is described elsewhere and the details need not be repeated
here.)

US 9,098,492 B2

75

When a user visits the website, an array (the “user work-
space”) is created. This array is stored in the PHP session to
make the data persistent. One of the elements of the user
workspace array is another array—the “process stack”. User
interaction with the system is conceptualised as a series of
processes (“select_object’, ‘add_object’, etc.). Ongoing state
information for the processes is stored in the process stack
with the current process sitting at the top of the stack. Each
process is modelled as an array (the “process workspace”),
itself stored as an element in the process stack. Processes can
be pushed onto the stack and popped from it as required.

In the preferred embodiment, each process has a single
controller script. It also has a series of pages (for user inter-
action) associated with it also written in PHP. For conve-
nience, the files (controller and pages) for each process are
stored in a separate directory belonging exclusively to that
process. The controller handles which pages are shown to the
user and in what order, responds according to the user’s
inputs, and performs operations such as writing knowledge to
the knowledge base. In the preferred embodiment pages do
not make changes to process data directly, but may look at
process data and do other operations solely for purposes such
as determining appropriate wording for questions. This dis-
tinction between the relative roles of the controller and page
scripts is not strictly necessary in terms of producing an
implementation but was found to have some software engi-
neering advantages.
2.9.5.1 Process Initialisation

A process is started by running its controller script. The
controller resumes the current session, and stores references
to certain elements of the user workspace, including the pro-
cess stack, in an object (this is a matter of convenience—other
embodiments might store a copy of the whole user workspace
as an array variable, for example). The controller needs to
know whether its process is already in existence as the current
process (i.e. the process at the top of the process stack), or
whether it needs to push its process onto the top of the stack
as a new process. Each process has a name; the name of the
current process is stored in the user workspace, and each
process stores the name of its parent process (the one below it
in the stack) in its own process workspace. If the current
process name in the user workspace is the same as the name
of'the process associated with the controller, then the control-
ler stores a reference to the current process workspace. If the
process associated with the controller is different from the
current process name stored in the user workspace, then a new
process workspace is pushed onto the process stack with its
parent process set to the current process name from the user
workspace, and the current process name in the user work-
space set to the new process name.

Any values to be passed to the controller are copied into the
process workspace at this point. Parameters passed up from
the parent process and return results from a sub-process are
stored as arrays in the user workspace before being copied
into the process workspace and unset. Values from the pro-
cess’s own pages are passed to the controller as POST or GET
data.
2.9.5.2 Step Control

Navigation through the process is controlled by a series of
steps in the controller. For the most part, a step can be thought
of as a stage in the process at which the user is asked for an
input via a page. Each step has a name, and the process
workspace includes an array of the steps visited so far as one
of'its elements. This array of steps is treated as a stack, with
the current step at the top. Advancing to a later step involves

10

15

20

25

30

35

40

45

50

55

60

65

76

pushing a new step name onto the step stack, and running the
controller until it finds the block of code corresponding to the
step at the top of the stack.

Returning from a page can be made to trigger a step
advancement automatically by including the new step value
in the data POSTed from the page.
2.9.5.3 Back Button

In the preferred embodiment almost all pages have a back
button, enabling the user to go back to the previous page. This
is implemented by POSTing a value to the controller, which
can be tested near the top of the controller script, and if found
to be true, results in the step stack being popped. For this
reason it is important that only steps at which the user is
shown a page are left in the step stack. (Whenever a step is
executed at which no page is shown, the step stack is popped
before the next step is pushed onto it.)

If the back button is used on the first page shown by a
process, the process itself is popped from the process stack,
and the back button value is set as a return value for the parent
process. This has the effect of returning the user to the last
page shown in the parent process.
2.9.5.4 Sub-Processes

If a step requires that a sub-process be called, an HTTP
location header is sent with the path to the sub-process’s
controller, and the controller script is exited. When the sub-
process terminates, the current controller is reloaded, any
return results from the sub-process are written into the pro-
cess workspace, and the script advances to the step it was on
when the sub-process was called. (It is necessary to have
some way of avoiding an infinite loop in such a step—a flag
set before calling the sub-process or a test for a value returned
by the sub-process are possible solutions.)
2.9.5.5 Process Termination

When the current process is ready to terminate, any results
to be returned are written to an array of return results in the
user workspace. Then the name of the current process stored
in the user workspace is replaced by the name of the parent
process, and the process stack is popped. Finally a header
redirect to the controller of the parent process is performed.

If there is no parent process (i.e. if the process being ter-
minated is the only process in the process stack), then a
default location should be specified. In the preferred embodi-
ment process termination is handled by a method on the user
workspace object, and this method has a return page argu-
ment which specifies the page to go to if there is no parent
process.

2.9.6 Process for Identifying an Object (Select_Object)

A process that is frequently used by other processes is what
is called the select_object process in the preferred embodi-
ment. It enables a user to identify another object of any type.
If the object is already in the knowledge base, its id is
returned. If not, the user is given an opportunity to add it
(using an appropriate sub-process) and then the id of the
newly added object is returned.

In the preferred embodiment, all objects must have exten-
sive natural language information recorded about them as
they are registered in the knowledge base, including as many
denotational strings as possible and a generally appreciated
unique recognition string (see section 2.3.2.1). This enables
other users to find the object (and thus the identifier); it greatly
reduces the risk of a single object in the real world being given
two identifiers within the knowledge base, as for this to hap-
pen two users would have to have no terms in common for
what they were denoting. For example, one internal identifier
might be [abraham lincoln]. If the following strings were
registered within the knowledge base as denoting this object

“abe lincoln”, presi-

29 <

abraham lincoln”,

2 <

president lincoln”,

US 9,098,492 B2

77

dent abraham lincoln”, etc., for another person to miss this
object they would have to list a set which had none of these
strings in common. If done properly, this is extremely
improbable.

As discussed in section 2.3.1, in the preferred embodiment,
the internal identifiers are a natural language phrase and are
distinguished from normal language by placing them in
square brackets. This enables experienced users to short-cut
the object selection process by simply typing the internal
identifier in square brackets. The system will then know that
the user is directly identifying an object, and (after checking
that the identifier exists) can skip the screen where alterna-
tives are listed or the unique recognition string of the object is
displayed for confirmation purposes. Other embodiments use
different syntax to distinguish between an internal identifier
and a natural language string (e.g. the square brackets could
be a different character). This also enables objects within the
knowledge base to be identified and readily recognised in
contexts very different from interactions with the preferred
embodiment. For example, a name in square brackets
included on a printed business card or paper advertisement
can be instantly recognised as an identifier pertaining to the
preferred embodiment and users can then enter it in the sys-
tem for more information, perhaps to obtain a profile screen
or within a natural language question. (In the preferred
embodiment, such identifiers can appear and be parsed within
a natural language question.) A third embodiment can do
away with any natural language in the identifier and use an
internal identifier for objects (e.g. a unique number). This
embodiment would rely on natural language being used to
identify the object.

FIG. 20 illustrates the process of identifying and selecting
an object in the preferred embodiment. The process begins by
asking the user for the object that he/she wishes to select (step
2002). The user may either enter a natural language string or
the object’s internal identifier if he/she knows it. A request is
then sent to the knowledge base for objects matching the
string (step 2004).

Often this process will be initiated at a point when the class
of'the object to be selected is already known (for instance, in
the example of a user asserting that “Paris is the capital of
France”, the knowledge base would expect the string
“France” to represent an object belonging to the class [geo-
graphical area]—see section 2.6.7). In such cases only objects
with the expected class membership are sought.

Normally matches would be sought across the whole range
of denotational strings associated with the set of objects (so
that “abe lincoln” entered by the user would bring up a match
with [abraham lincoln], as well as any other people known as
“Abe Lincoln”). If the string entered by the user had the
format of an internal identifier, however, the string would
only be compared with internal identifiers within the knowl-
edge base (so that “[abraham lincoln|” entered by the user
would only bring up a match with [abraham lincoln], and not
any other individual who might be referred to by the same
name).

The number of matches found is examined (step 2006), and
the user is given options accordingly. If only one match was
found, the user is asked to confirm whether or not the match-
ing object is the right one, and given alternative options, if the
matching object is not what was sought, of trying again, or
adding the desired object (step 2008). If the user entered an
internal identifier, and a match was found, then the process
omits step 2008, and continues as though confirmation had
been given. If no matches were found, the user is given the
options of trying again, or adding the desired object (step
2010). If more than one match was found, the user is pre-

10

15

20

25

30

35

40

45

50

55

60

65

78

sented with the unique recognition strings of a list of matches
(each linked to their profile) and asked to select the one
intended, but is also given the alternative of trying again, or
adding the desired object (step 2012).

In one variant of the preferred embodiment an additional
check on the number of matches, where more than one was
found, would be carried out, and step 2012 would only be
entered if the number of matches were below some number
judged to be reasonable (otherwise the user would be returned
to step 2002 with a notice asking him/her to enter a more
specific string).

Step 2014 is a check on the user’s response to the options
given in step 2008, 2010, or 2012. If the user opted to try
again, the process returns to step 2002. If an object was
selected, the process terminates, returning that object. If,
however, the user opted to add the desired object, a check is
made to see whether the object’s class is complete (i.e.
labelled as having all members already fully identified in the
knowledge base). If the class is complete, objects can’t be
added to it. This is explained to the user (step 2018), and the
process returns to step 2002.

If the object can be added, the process must first examine
the class of the object being requested (step 2020). If the
object is aclass, then the “add_class” process is initiated (step
2022—described in section 2.9.7.3). If the object is a relation,
then the “add_relation” process is initiated (step 2024—see
section 2.9.7.5). If, however, the object is of any other type, a
check is made to see whether the object could be a class or a
relation, i.e. whether class or relation are subclasses of the
class of the object being requested (step 2026), and, if neces-
sary, the user is asked to clarify (step 2030). If the user’s
response is that the object is a class or a relation (step 2032),
then the class is reset accordingly (step 2034), and the process
returns to step 2020. If the object is not a class or a relation,
then the “add_object” process is initiated (step 2028—see
section 2.9.7.1).

2.9.7 Processes for Adding New Objects

One type of knowledge that a user may wish to assert is the
existence of an object not already present in the knowledge
base. This task may be a goal in itself, or it will come up when
the absence of an identifier for an object is discovered during
the assertion of other knowledge.

The act of adding a new object includes the creation of an
internal identifier for the new object, an assertion of at least
one class the object is a member of, the storage of a unique
recognition string (or other unique recognition data) for the
object and the collection and storage of at least one denota-
tional string for the object. To limit the possibility of adding
the same object twice, checks can be made on the added
denotational strings to see what other objects they denote and
the user is asked to confirm (by presenting their unique rec-
ognition strings) that these pre-existing objects are not the one
the user intends to add. (When the class of the added object is
known, objects being denoted which are in distinct classes
need not be presented in various embodiments.)

Embodiments also seek to collect other useful knowledge
about the new object in the process of interacting with the
user. In the preferred embodiment, adding new class and
relation objects is sufficiently different in terms of the knowl-
edge collected that they are implemented in separate pro-
cesses. All other objects are handled by the add_object pro-
cess. The add_corefacts process (section 2.9.11.1) mitigates
this somewhat by collecting additional knowledge from the
user tailored to the specific class of the object added.
2.9.7.1 Default Process for Adding an Object (Add_Object)

This process is for adding a new object to the knowledge
base. This process is used when the object is not a class or

US 9,098,492 B2

79

relation as these have sufficiently different needs to use dif-
ferent processes (see below). add_object is used for all indi-
vidual objects, physical or conceptual including attributes.

FIG. 21 shows the steps involved in adding a new object to
the knowledge base. The class for the object is set first (to the
root class [object]| by default, but can also be set to another
class by a calling process. e.g. during authentication, the class
can be set to [human being]).

The process begins with the user being asked for the most
common term for the object to be added (step 2102)—this
will be assigned as the common output translation string. The
knowledge base is queried for other instances of the same
string within the same class, and if one (or more) is found, the
user is presented with the unique recognition string of the
corresponding object, and asked to confirm that it is not the
one that he/she is in the process of adding. The user’s
response is tested (step 2104)—if one of the matching objects
is the intended one, an assertion is made that the string is the
common output translation of that object (step 2105), and the
process terminates returning that object.

Next, the process attempts to identify the Principal Class of
the object by consulting the ontology of the knowledge base
(step 2106). Whether or not it is able to do this will depend on
the circumstances in which the process was called (if the class
is the default root class, no Principal Class will be found, but
if the class has been set to [human being]| then [human being]
will be the Principal Class). If a Principal Class can be estab-
lished, then it is assigned as the Principal Class for the object
(step 2108). If the process cannot find a Principal Class, then
the class of the object may not be specific enough, so the
“select_object” process is initiated for the user to identify and
select the most specific class for the object (step 2110—
described in section 2.9.6). The class returned by “select_o-
bject” is then tested to see whether a Principal Class can be
determined from it (step 2112). If a Principal Class can be
determined, then it is assigned as the Principal Class for the
object (2108). If not, then the user is asked to confirm that the
selected class really is the most specific possible (step 2114).
A change of mind at this point returns the user to the “selec-
t_object” process, but otherwise the user is permitted to con-
tinue adding the object with no Principal Class.

The object’s class is then tested to see whether or not it is
permanent (step 2116), and if it is not then the “select_time-
period_for_fact” process is initiated for the user to state the
period of time during which the object was a member of the
class (step 2118—described in section 2.9.12).

The next step (2120) is to request a unique recognition
string for the object. The knowledge base is queried for any
other instance of the same string, and in the (unlikely) event
that one is found, the user is presented with the corresponding
object, and asked to confirm that it is the one that he/she is in
the process of adding. The user’s response is tested (step
2122)—if the matching object is the intended one, all the
knowledge gathered so far is asserted to be true of that object
(step 2105), and the process terminates returning that object.
If the matching object is not the intended one, the user is
returned to step 2120.

The process is now ready to gather a list of terms that could
be used to refer to the object being added. These denotational
strings are important in avoiding duplication within the
knowledge base and to translate as effectively as possible, so
as many should be added as the user can think of. The com-
mon output translation string and unique recognition string
already added can themselves be regarded as denotational
strings, and are set accordingly by default. The process then
requests additional denotational strings (step 2124—illus-
trated in detail in FIG. 33 and described in section 2.9.9),

10

15

20

25

30

35

40

45

50

55

60

65

80

which are checked for matches in turn. The addition of deno-
tational strings may be terminated if a match is found and the
user confirms that it is the object that he/she wanted to add
(step 2126). In this case all the knowledge gathered so far is
asserted to be true of that object (step 2105), and the process
terminates returning it. Otherwise the user continues adding
strings until he/she can think of no more.

Ifthe object is an attribute (determined from its class), two
additional pieces of knowledge will be required. First the user
is asked to identify the attribute’s scope (the most general
class of objects to which it can apply) via the “select_object”
process (step 2130). Next the user is asked whether or not the
attribute is permanent in its application (step 2132). As these
are the only two extra items of knowledge required by the
preferred embodiment for attributes, there is no special add-
_attribute process. Other embodiments may have special han-
dling for other classes here or may have additional special
processes for objects of a certain type.

Itis now desirable to choose an identifier for the object. The
system creates a valid identifier from the common output
translation string (to be valid an identifier must be unique,
must only contain certain characters, and must be within a
particular range of lengths). This identifier is presented to the
user, who is given the choice of accepting it or creating a
different one (step 2134). If the user chooses to create a
different identifier, this is checked for validity before the
process can continue.

Once a valid identifier has been chosen, if the Principal
Class is one that takes a documentor string, then the user is
given the option of adding such a string (step 2136).

If the object being added is a human being, and the user is
not already logged in or adding him/herself via the authenti-
cation process, then it is necessary to know whether the per-
son being added is, in fact, the user. The user is asked about
this, if necessary, at step 2138.

During the course of the process, the assertions to be made
are added to an array, either directly from the user’s
responses, or by inference from those responses. The process
is now ready to make these assertions storing the collected
knowledge in the knowledge base (step 2140—illustrated in
detail in FIG. 32 and described in section 2.9.8).

Finally, the “add_corefacts” process can be initiated (step
2142—illustrated in FIG. 36 and described in section
2.9.11.1). In the preferred embodiment step 2142 is omitted if
the object added was the user him/herself (in such a case
“add_corefacts” is called instead at the end of the authenti-
cation process). The process then terminates, returning the
new object’s identifier.
2.9.7.2 Add_Object Illustration

An illustrative session of a user using an implementation of
the add_object process to add the US state of Oregon to an
embodiment is shown in FIG. 22 and FIG. 23.

2202 shows the initial screen of the add object process
where the user is prompted for the most normal name of the
object being added (additional instructions and examples are
omitted for space reasons). The user enters “Oregon” and
proceeds by clicking the “enter” button (2203).

2204 shows the confirmation screen for this step. Confir-
mation screens act as a double check against incorrectly
entered information and allow the user to change their mind
and replace what they have entered. A general philosophy of
the preferred embodiment is that confirmation screens should
ideally re-present the knowledge given by the user in as
different way as possible from the way that the knowledge
was initially prompted for, to ensure that the user fully under-
stands the significance of the knowledge they are providing.

US 9,098,492 B2

81

2206 shows the add_object process prompting for the class
of'the newly added object. (If a class had been provided when
this process was called this step would have been skipped.)
The common translation string of the object provided in the
first step has now been incorporated into the prompt for the
class. The user enters “US state” and clicks the “enter” button.
The add_object process then calls the select_object process
with the string entered and, as the object being selected is a
class, it is also passed [class] as a parameter.

The knowledge base is then consulted with the query:

10

82

Control then passes to 2214 where the start point for it
being true is prompted for. (If the user had said it wasn’t true
now, the point when it ceased to be true would also have been
requested).

The user enters “Feb 14th, 1859 and the process calls the
select_timepoint process with the string which does the fol-
lowing query:

query tp
[“Feb 14th 1859”] [can denote] tp
tp [is an instance of] [timepoint]

query a
[“us state™] [can denote] a
a [is an instance of] [class]

which produces one result. select_object presents the one
result and asks for confirmation that this is the one intended.
If more than one result had been returned (an ambiguous
denotational string) the user would have been given the option
to select the one intended.

The option to try again or add a new class corresponding to
this denotation string is also provided.

Note that if the string provided was an unknown denota-
tional string for an existing class the add_class process would
be called but this would probably not result in the addition of
the class a second time as the add_class would prompt for as
many different denotational strings as the user can think of for
the “new” class. Any hits on previously existing classes
would be asked about by displaying their unique recognition
strings linked to profiles of the pre-existing objects and if the
user discovered at this point that the class already existed,
they would be given the opportunity to say so and add_class
would exit returning the pre-existing class and adding the
assertion of this string denoting the class to the knowledge
base. In this example for the class of US states to be added
twice both the user who initially added the class and the user
attempting to add it a second time would have to provide no
denotational strings in common for the second user to fail to
realise it was already in the knowledge base.

In this exemplary interaction, the user is happy to confirm
that the unique recognition string for the class, “state of the
United States of America” corresponds to what they were
intending to say and the process proceeds to the confirmation
screen 2210

In the confirmation screen 2210, the user confirms that they
are indeed trying to say that Oregon is a state and the process
controller then checks to see whether the class is permanent or
temporary with the query:
query
[class is permanent] [applies to] [us state]

A permanent class is one where its members cannot cease
to be members without being considered something funda-
mentally different. As the current US states were in existence
prior to joining the union and could conceivably someday
leave the union and still continue to exist, the class [us state]
was considered to be a temporary class when first added to the
knowledge base. (An alternative ontology could make it per-
manent and consider the independent version of each state to
be a different entity with a different id. In this case, this would
also have been a practical approach.)

As the class is temporary the add_object process now calls
the select_timeperiod_for_fact process (section 2.9.12) to
obtain a period of time for Oregon’s membership.

2212 shows the first screen in this process. The user asserts
that Oregon is currently a US state.

15

25

30

35

40

45

50

55

60

65

This query is answered successfully (utilising a smart gen-
erator to convert the string into the internal representation of
a timepoint) and control passes to 2216 for confirmation.

The user confirms that the timepoint parsed was what they
intended and control then passes to 2218

On screen 2218 the user is prompted to clarify whether the
date they entered is actually the point when the relationship
started or just the earliest point they know about. The user
selects “no” indicating that this was the timepoint when mem-
bership began, enabling the process to assert the negative fact
for the earlier timeperiod. Control then passes back to the
add_object process.

The next screen in the add_object process is 2220. Here the
user is prompted for a unique recognition string for Oregon.
The user enters “the US state of Oregon”. As there is only one
US state called Oregon and as everyone wanting to denote
Oregon would know it was a US state this is sufficient.

The user confirms their choice on 2302 and control passes
to screen 2304

In 2304 the user is prompted to create a list of as many
possible denotational strings as possible for Oregon. 2304
continues to go around in a loop adding strings added by the
user to the list until the user indicates that that the list is
complete by clicking another button (not shown for space
reasons). If any of the denotational strings can denote any
pre-existing object not in a distinct class, the unique recogni-
tion strings of these objects would be shown to the user for
confirmation that this is not the object they were intending to
add.

The list of denotational strings is presented for confirma-
tion on screen 2306.

On screen 2308 the user is prompted for the id for the newly
added object. The common translation string is checked for
uniqueness and suggested as a possible id for selection by the
user.

2310 asks for confirmation of the id.

2312 is the final confirmation screen. It presents all the
facts gathered from the interaction with the user and by
default sets the source as the user. If the user wants to com-
municate another source and/or document at this point they
can do so by entering it in the add new source box. Doing so
would repaint this screen with a drop-down list next to each
fact allowing the user to change the source for one or more of
the presented facts.

When the user clicks the “add these facts” button, all the
displayed facts are added to the knowledge base, an initial
user assessment by the user and source endorsing them is
added to the endorsements table and a system assessment is
done on each of these newly added facts. If any of the system
assessments had resulted in the fact being contradicted, a
report would have been displayed. In this case, all the facts
were added without issue so the confirmation screen 2314 is
displayed.

US 9,098,492 B2

83

2.9.7.3 Process for Adding Classes (Add_Class)

One type of knowledge that a user may wish to assert is the
existence of a new class that is not already present within the
knowledge base.

The procedure in the preferred embodiment is very similar
to the process for adding any other object.

The process used in the preferred embodiment for adding a
class object is illustrated in FIG. 24. The process begins with
the user being asked for the most common term for the class
to be added (step 2402)—this will be assigned as its common
output translation string. The knowledge base is queried for
other classes denoted by the same string, and if one (or more)
is found, the user is presented with that class, and asked to
confirm that it is not the one that he/she is in the process of
adding. The user’s response is tested (step 2404)—if one of
the matching classes is the intended one, an assertion is made
that the string is the common output translation of that class
(step 2440), and the process terminates returning it.

The next step (2406) is to request a unique recognition
string for the class. The knowledge base is queried for any
other classes denoted by the entered string, and if one is
found, the user is presented with its unique recognition string,
and asked to confirm that it is not the one that he/she is in the
process of adding. The user’s response is tested (step 2408)—
if the matching class is the intended one, all the knowledge
gathered so far (the common output translation string and the
unique recognition string) is asserted to be true of that class
(step 2440), and the process terminates returning it. If the
matching class is not the intended one, the user is returned to
step 2406.

The common output translation string and unique recogni-
tion string already added can be regarded as denotational
strings, and are set as such. The process then requests addi-
tional denotational strings for the class (step 2410), using the
loop illustrated in FIG. 33 and described in section 2.9.9. The
addition of denotational strings may be terminated if a match
is found and the user confirms that it is the class that he/she
was in the process of adding (step 3312). In this case all the
knowledge gathered so far is asserted to be true of that class
(step 2440), and the process terminates, returning the match-
ing class. Otherwise the user continues adding strings until
he/she can think of no more.

Plural forms are now generated for each ofthe denotational
strings, and these are shown to the user for correction/confir-
mation (step 2414).

The next step is to establish the position of the class being
added within the ontology of the knowledge base. The pro-
cess initiates the “select_object” process and asks the user to
identify and select the most specific parent class for the class
being added (2416—described in section 2.9.6). If the parent
class has any direct subclasses, the user is asked whether each
is distinct from the class being added, or is a partial or full
subset of it and this knowledge is recorded for later assertion
(step 2418). If a subclass is a partial subset of the class being
added, then that subclass’s own direct subclasses are found,
and the user is asked the same question of each of them. If a
subclass is a full subset of the class being added, then it can be
asserted that it is a subclass of the class being added.

Refinements to this step are possible in certain embodi-
ments. To help the user choose the most appropriate parent
class or classes, some embodiments take the user through the
ontology from a particular starting class (for example, a par-
ent class suggested by the user or even the root [object] class
if the user was unable to identify a parent), find the direct
subclasses of that class, and ask the user whether any of those
classes is a parent of the class being added. The user would
then be asked about the subclasses of each class to which he

10

20

25

30

35

40

45

50

55

60

65

84

or she had answered ‘yes’, and this question and answer
process would continue until he or she had said ‘yes’ or ‘no’
to all the possible classes.

Some embodiments usefully insist in the selection of just
one parent class for the class being added, but others can
permit the selection of multiple parent classes. For example,
in an ontology containing the classes [mammal] and [sea-
dwelling animal] a user could legitimately (and usefully)
select both as parents when adding the class [whale]. Embodi-
ments which permit the selection of multiple parents during
the “add_class” process need to check that none of the
selected parents are a distinct class from, or a subclass of, one
of the others (it would be pointless to select [mammal] and
[whale] as parents of [blue whale], and wrong to select [inver-
tebrate]| and [whale]).

The parent class is tested to see whether it is permanent or
temporary (step 2420). If the parent class is temporary, then
the class being added must also be temporary, so the process
can add this fact to its array of assertions to be made (step
2422). If the parent class is permanent, then the user is asked
whether or not the class being added is also permanent (step
2424). (In embodiments where there may be more than one
parent class, having any temporary class as a parent is suffi-
cient to say that the class to be added is temporary.)

The process next looks to see whether the parent class has
aPrincipal Class, i.e. is itself labelled as Principal, or is below
aclass which is so labelled (step 2426). The Principal Class of
a class’s parent class will also be the Principal Class of the
class itself. If the parent class has a Principal Class, then the
fact that the class being added is not Principal can be added to
the array of assertions to be made (step 2428). If a Principal
Class could not be found for the parent, then the user is asked
whether the class that he/she is adding can be asserted to be
Principal (step 2430). The user’s response is tested (step
2432), and if he/she has said that the class is not Principal,
then a warning is given about the apparent inspecificity of the
class, and confirmation is requested (step 2434).

The next step is to choose an identifier for the class. The
system creates a valid identifier from the common output
translation string. This identifier is presented to the user, who
is given the choice of accepting it or creating a different one
(step 2436). If the user chooses to create a different identifier,
this is checked for validity before the process can continue.

Once a valid identifier has been chosen, the user is pre-
sented with a page (step 2438) requesting a documentor string
(the user has the option to leave this empty).

Finally the process is ready to make the assertions gathered
from the user’s responses and the system’s own inferences
(step 2440—illustrated in detail in FIG. 32 and described in
section 2.9.8). The system then terminates, returning the
identifier of the new class.
2.9.7.4 Add_Class Illustration

An exemplary run of the add_class process is shown on
FIG. 25 and FIG. 26. The user is attempting to add the class of
California Redwood trees to the system.

In screen 2502 the user is prompted for the common trans-
lation of the class they wish to add. The user enters “sequoia”.

After confirmation, control goes to screen 2504 where the
user is prompted for the unique recognition string for the
class. The user enters “sequoia tree (the California redwood,
sequoia sempervirens)” here. As this combines both common
names for the species, the word “tree” and the strict latin name
for the species, it is sufficient.

As with add_object all possible denotational strings are
prompted for on screen 2506. The user continues to add
denotational strings and then clicks the “no more” button
when the list is complete. Potential clashes would result in the

US 9,098,492 B2

85

unique recognition strings of the possible duplicate objects
being presented for confirmation but there were no clashes in
this example. Confirmation takes places on screen 2508.

Unlike with add_object, class denotational strings may
need to be pluralised or recognised in their plural form. There
is already a smart generator that can generate English plurals
from one string to another but for confirmation the results for
each denotational string are presented to the user and the user
is allowed to correct any errors made by the smart generator
(2510). Alternative embodiments could just prompt for the
plurals. These plurals are then confirmed.

On screen 2512 the immediate parent class of the newly

added class is prompted for. The user asserts that a sequoia is
a kind of tree.
“tree” can only denote one class so the system now displays
the unique recognition string for this class “tree (the tall
woody, perennial plant with trunk and branches)” and asks
the user for confirmation (2514).

2516 asks for confirmation of the parent class using difter-
ent language from the initial screen. The user again confirms
that everything is OK.

In various embodiments, additional prompts attempting to
firmly place this new class within the current ontology would
take place at this stage. The knowledge base can be consulted
for subclasses of the selected parent class and asked if they are
a more specific parent class to the one indicated. When the
parent class is fixed, each immediate child class of the
selected parent can be prompted for and the user asked
whether it is possible for these classes to overlap or not. If the
answer is “no”, facts of the form classl [is a distinct class
from] class2 are generated. If “no” similar prompts are made
for the immediate subclasses of the overlapping class. By
including this procedure in the add_class process and having
generators which can infer class membership or non mem-
bership using this information, an accurate yes or no answer
can be provided for membership of any object in any class.

2602 shows the screen where the user is prompted about
the [class is permanent] property of the class. As a sequoia
tree cannot change species or be converted into any other
object without being a fundamentally different thing, the
class is clearly permanent and the user indicates this.

Confirmation takes places on screen 2604. Similarly to
add_object 2606 prompts for an id.

On screen 2608 the user is given the chance to enter a
documentor for the class (see 2.9.3).

Screen 2610 shows the final confirmation screen of the
process listing all the facts gleaned from the interaction with
the user. Similarly to add_object, the user has the chance to
add sources to the facts listed.

When the user clicks “add these facts™ all the facts are
added to the knowledge base, a user assessment endorsement
added, system assessment done and any problems reported in
an identical manner to the add_object process described
above.

The confirmation screen 2612 is then displayed when this
has happened.
2.9.7.5 Process for Adding Relations (Add_Relation)

Desirable information requested about a relation includes
the class of the objects that the relation can assert a relation-
ship between (one for each side) and whether the relationship
is permanent or not. The class of each side of the relation can
be used to resolve ambiguity in questions. Permanence is
important in knowing when the relationship holds. Other
knowledge can also be collected.

The process used in the preferred embodiment for adding a
relation object is illustrated in FIG. 27. The process begins
with the user being asked for the most common term for the

10

15

20

25

30

35

40

45

50

55

60

65

86

relation to be added (step 2702)—this will be assigned as its
common output translation string. The knowledge base is
queried for other relations denoted by the same string, and if
one (or more)is found, the user is presented with that relation,
and asked to confirm that it is not the one that he/she is in the
process of adding. The user’s response is tested (step 2704)—
if one of the matching relations is the intended one, an asser-
tion is made that the string is the common output translation
of'that relation (step 2705), and the process terminates return-
ing it.

The next step (2706) is to request a unique recognition
string for the relation. The knowledge base is queried for any
other relations matching the entered string, and if one is
found, the user is presented with it, and asked to confirm that
it is the one that he/she is in the process of adding. The user’s
response is tested (step 2708)—if the matching relation is the
intended one, all the knowledge gathered so far (the common
output translation string and the unique recognition string) is
asserted to be true of that relation (step 2705), and the process
terminates returning it. If the matching relation is not the
intended one, the user is returned to step 2706.

The common output translation string and unique recogni-
tion string already added can be regarded as present central
strings, and are set as such. These are similar to denotational
strings collected in add_object and add_class. The process
then requests additional present central strings for the relation
(step 2710), using the loop illustrated in FIG. 33 and
described in section 2.9.9. The addition of present central
strings may be terminated if a match is found and the user
confirms that it is the relation that he/she was in the process of
adding (step 3312) after seeing the unique recognition string
of'the match. In this case all the knowledge gathered so far is
asserted to be true of that relation (step 2705), and the process
terminates, returning the matching relation. Otherwise the
user continues adding strings until he/she can think of no
more.

The process then goes on to establish the left and right
classes of the relation being added. First, the process initiates
the “select_object” process with a message requesting the left
class of the relation (step 2714—described in section 2.9.6).
The object returned by “select_object” is stored as the left
class. Then the process reinitiates “select_object” to request
the right class (step 2716).

Step 2718 represents the collection of various core prop-
erties of the relation. First the user is asked whether the
relation is permanent. If it isn’t, a check is made to see
whether the left and right classes contain objects which can
have a creation date, and if this is the case for either, the user
is asked whether the object on that side of the relation must
exist for facts involving the relation to be meaningful. If the
left and right classes are different (and neither is a subclass of
the other), then it can be inferred that the relation is antisym-
metric and antitransitive, otherwise the user must be asked
whether it is symmetric and/or transitive. If the relation is
transitive then it cannot be left unique, but if it isn’t transitive
the user must be asked about the left uniqueness. If the rela-
tion is not left unique, the present central strings are checked
for the presence ofthe definite article, and if it is not found, the
user is asked whether the relation is “anti left unique”. (A
relation such as [is a child of] is neither left unique nor anti left
unique—-is the child of” is one of its present central strings;
[is a citizen of], however, is anti left unique—it would not
make sense to say that somebody is “the citizen” of a country.)
The final core property collected in step 2718 is whether or
not the relation is right unique. This involves one or two tests.
If the relation is transitive, then it can be inferred that it is not
right unique. If it isn’t transitive, but is symmetric, then the

US 9,098,492 B2

87

right unique value will be the same as the left unique value. If
it is neither transitive nor symmetric, then the user must be
asked about the relation’s right uniqueness.

Step 2720 is the collection of left possessive strings for the
relation. Often some of these strings can be generated from
the present central strings (e.g. “child” from “is a child of™).
Left possessive strings are then requested from the user in the
same way as the present central strings were collected, using
the loop illustrated in FIG. 33 and described in section 2.9.9.
The addition of these strings may be terminated if a match is
found, the match’s unique recognition string is displayed
(with a link to its profile), and the user confirms that it is the
relation that he/she was in the process of adding (step 2722).
In this case all the knowledge gathered so far is asserted to be
true of that relation (step 2705), and the process terminates,
returning the matching relation.

Just as left possessive strings can be generated from present
central strings, so new present central strings may be created
from the left possessive strings entered by the user. [f any new
present central forms are created, they are shown to the user,
who is given the opportunity to reject any that are wrong (step
2724).

The next step is to choose an identifier for the relation. The
system creates a valid identifier from the common output
translation string if it is unique—adding a number to make a
unique id if it is not. This identifier is presented to the user,
who is given the choice of accepting it or creating a different
one (step 2726). If the user chooses to create a different
identifier, this is checked for validity before the process can
continue.

Once a valid identifier has been chosen, the user is pre-
sented with a page (step 2728) requesting a documentor string
(the user has the option to leave this empty).

The process is then ready to make the assertions gathered
from the user’s responses and the system’s own inferences
(step 2730—illustrated in detail in FIG. 32 and described in
section 2.9.8).

Once the main batch of assertions has been made, one or
two more pieces of information are requested (step 2732).
The first is whether a more general form of the relation exists
(e.g. [is married to] is a more general form of [is the wife of]).
The second, which is only asked if the relation is not sym-
metric, is whether the relation has a natural-sounding reverse
form (e.g. [is a parent of] is the reverse form of [is a child of]).
(This second question is also omitted if the relation being
added is the reverse form of an existing relation.) Both ques-
tions are optional—the user can choose not to answer them. If
either is answered, the user’s input is sent to the “select_ob-
ject” process for identification (described in section 2.9.6).
These additional assertions are then made (step 2734—illus-
trated in detail in FIG. 32 and described in section 2.9.8).

Finally, the system terminates, returning the identifier of
the new relation.
2.9.7.6 Ilustration Of Add_Relation

An exemplary interaction between a user and the add_rela-
tion process is shown in FIG. 28, FIG. 29, FIG. 30 and FIG.
31.

The user is wishing to add the relation linking a person with
the geographical area where they are normally resident so that
facts asserting such information are supported by the system.

In screen 2802 the user is prompted the common transla-
tion of the relation they wish to add.

For both the common translation and generally appreciated
unique recognition string various embodiments using English
as the natural language prompt for a present-tense expression
of the relation starting with the word “is”. This simplifies
translation into other tenses as in almost all cases, other tenses

25

30

40

45

88

and forms can be generated just by substituting the “is” for
other strings conforming to English grammar rules (e.g. “has
been”, “is not”, “have not been”). Various embodiments allow
the user to override the insistence on this requirement and
express the relation in other ways, prompting the user for
confirmation of the other forms later in the process.

In this example, a very natural form “is resident in” accu-
rately expresses the common translation of the relation being
added. The user fills this in and (after confirmation) proceeds
to the next screen.

Screen 2804 shows the user being prompted for the gener-
ally appreciated unique recognition string of the relation. In
this case the only extra clarification that is needed is to clarify
that this relation refers to the general residence of the person
so only a slightly augmented version of the common transla-
tion string is entered.

Like the add_object and add_class processes, screen 2806
is where the user provides as many alternative denotational
strings for the relation as possible to maximise the chances of
the relation being hit when other users attempt to denote it.
For this screen central present forms not starting with “is” are
permitted. As with add_object and add_class the translation
strings are added automatically to this list.

2808 is the confirmation string for these forms. The user
confirms the list and proceeds to entering the left and right
classes of the relation.

The left and right classes of a relation are a consequence of
the semantics of the relation. They provide the largest class of
objects which can appear on the left of the relation and the
largest class of objects which can appear on the right. Any
object which is not in the left and right class cannot have the
relation with any other object. One major use of this knowl-
edge is to disambiguate ambiguous translations of questions
(see section 2.6.7)

2810 and 2812 prompt for the left class of the relation. In
this case it is the class of human beings.

2814 and 2816 prompt for the right class. In this case it is
the class of geographical areas.

This information is also useful for steering and explaining
the later stages of the process.

Many of the following screens ask about common proper-
ties of the relationship. Some of these prompts are skipped by
logical deduction from the left and right classes so this illus-
tration only shows some of the questions that may be asked.
For example, the process controller can infer that the relation-
ship is not symmetric (ar b=>b ra) as the left and right classes
are different. It can also infer that the relationship is antisym-
metric as it can do a query and find that [human being] [is a
distinct class from]| [geographic areal].

2902 shows the screen asking whether the relationship is
permanent or not. Some relations can change between two
objects, such as this one (it is possible to cease to be resident
in one place and to become resident in another place). Some
relationships are permanent. The attribute being asked about
is [relation is permanent].

2904 is the confirmation screen for this step.

As [human being] is a subclass of the class [object with a
creation date| the process then enquires whether the relation-
ship can only hold when the left object is in existence (in this
case alive). The semantics of some relationships require this
and others do not. 2906 prompts for this property and 2908
confirms it. The user says that this property holds. Note that
the page uses the word “alive” on this page as it can word
intelligently according to what has been entered. As it knows
that the left class is a subclass of [biological object] it uses the
word “alive” in the prompt. Otherwise the word “exists”
would have been used.

US 9,098,492 B2

89

2910 and 2912 do the same for the right class (rewording
with the word “exists” as it can do a query to show that
[geographical area] is not a subclass of animal).

2914 and 2916 prompt and confirm for the [left unique]
property of the relation. This property asks whether the
semantics of the relation permit more than one entity to have
the relationship with another fixed entity at the same time. As
more than one person can be resident in a particular place at
any one time the answer to this question is yes (implying that
[left unique] does not apply).

2918 asks about whether about the property of whether it is
possible for a single entity to have the relationship despite it
not being required: [anti left unique]. This property would not
have been asked if the relationship was [left unique] as it
could then be inferred that it does not apply. This property is
useful with the English language for determining whether the
indefinite article “the” can be used in denoting the relation-
ship. In embodiments where English is not used, this step
might be skipped. As it is just possible for a person to be the
only resident of a particular geographical area (a private
island or small estate perhaps), the user answers this question
yes and their answer is confirmed on 2920.

In 3002 the user is asked about the [right unique] property
of the relationship. As the concept being captured is the
primary residence of a person, this relationship is [right
unique] and the answer to the question is “no”. This is con-
firmed on 3004.

3006 and 3008 prompt for what in the preferred embodi-
ment is called “left possessive forms™ of a relation (using
similar user interface methods to the prompting for denota-
tional strings). This is an alternative way of conceptualising a
relationship in English and other languages where the left
object is thought of as being owned by the right object with a
class to which the left object belongs being used to commu-
nicate the semantics of the relationship. For example, when
we say “Paris is the capital city of France” we can also say
“Paris is France’s capital city”.

In step 3010 the controller has used the left possessive
forms given by the user to suggest some other present central
forms possibly missed by the user. The articles “a/an” or “the”
chosen are partly determined by the user’s responses to [left
unique] and [anti left unique] properties. As both do not apply
both articles are used in generating the possible central
present forms.

After the user confirms these forms control passes to screen
3012 where the user is prompted for an id in a similar manner
to the add_object and add_class processes.

3014 is where the user is prompted for a documentor.
Documentors are particularly important for relations.

3102 is where the collected facts are presented to the user
and alternative sources can be specified. This is similar to the
corresponding steps in add_object and add_class. When the
user confirms these, the facts are written to the static knowl-
edge base and system assessed as with the other add knowl-
edge processes.

When this is completed without anything to report, control
passes to 3104 where the user is asked about a more general
form of the relation just added. This knowledge can beused to
generate more general forms of a relation from a more spe-
cific fact stored in the static knowledge base.

The user says they cannot think of one at the moment and
control passes to screen 3106.

In 3106 a reverse form is asked about. A reverse form is a
semantically identical relationship where the left and right
objects are reversed. In this case, the reverse form of the
relation was already present in the knowledge base. If it was
not, the add_relation process would have been repeated for

10

15

20

25

30

35

40

45

50

55

60

65

90

the reverse form (and by passing the name of the reverse
relation to the process it would be able to skip many steps
where the answers could be logically inferred from the prop-
erties of the relation which were the reverse, i.e. the left and
right classes and properties).

When a reverse relation is specified in add_relation, the
preferred embodiment labels the more newly added relation
with the property [reverse form preferred]. This property is
used by add_fact and the query processing system to switch
around relations which have this property by changing them
for their reverse relation and swapping the left and right
objects. For add_fact this keeps the static knowledge base
“tidy” by not having semantically identical facts in two for-
mats (e.g. having <attribute> [applies to] <object> facts as
well as <object> [is] <attribute> facts). For query processing
it also means that the generator which generates reverse forms
can be ignored, gaining some efficiency. Alternative embodi-
ments which have the generator active and allow static facts to
be asserted both ways around are also believed practical
though.

Screens 3108, 3110 and 3112 show the reverse form of the
relation being selected and confirmed and the reverse rela-
tionship being confirmed. Finally the addition of the initial
relation is confirmed (3114).

2.9.8 Assertions Process/Routine

Atthe end of each of the “add_object”, “add_relation”, and
“add_class” processes the user is presented with a list of the
assertions to be made, and given options to associate different
assertions with different sources. These assertions must be
confirmed before they can be made. The method by which this
is done is illustrated in FIG. 32.

The first step (3202) is to loop through the array of asser-
tions checking that each is permissible. If any are not permis-
sible (for example, if one of the denotational strings supplied
by the user to denote a particular person is suppressed for
knowledge addition), then the list of assertions is shown to the
user (step 3204) with the problem assertions highlighted. The
user is asked to correct the problems. Continuing from this
point will take the user back to the step associated with the
problem assertion (step 3206)—if there is more than one
problem assertion, then the user is taken back to the earliest
one in the process.

If all the assertions are permissible, then the user is shown
them as a list, together with the source for each (step 3208).
By default the source is the user him/herself. This page gives
the user options to add a new source to the available sources
(by entering the name of the source in an input box), confirm
the assertions as presented, or change a particular assertion. If
more than one source is available, he/she can associate par-
ticular assertions with particular sources before confirming.
The user’s response is then tested (step 3210).

If the user chose to change an assertion (‘disagree’), then
he/she is taken back to the step associated with that assertion
(step 3206).

Ifthe user chose to add a new source, the string input must
be identified as a source, and, if possible, an animate source
identified (step 3212). The method for doing this is illustrated
in detail in FIG. 38 (described in 2.9.13). Once the source has
been identified, it is added to the list of sources available (step
3214). The user is returned to the assertions confirmation
page (step 3208). Users can add as many sources as desired
(one at a time) by looping through steps 3208 to 3214.

Once the user is ready to confirm the assertions (and has
associated sources with them), a check is made on whether or
not the user is logged in (step 3216). If the user is not logged
in, he/she is required to do so (step 3218—the “authenticate”

US 9,098,492 B2

91

process illustrated in FIG. 19 and described in section 2.8.
The assertions can now be made (step 3220).
2.9.9 Denotational strings collection

Denotational strings are related to their object by various
relations, including [can denote], as shown in examples in
section 2.6.1. They are names or phrases which may be used
to denote the object, and are important in translating user
queries and in avoiding the addition of duplicate objects to the
knowledge base. In the preferred embodiment the same
method for gathering these strings is used by the “add_ob-
ject”, “add_relation”, and “add_class” processes. This
method is illustrated in FIG. 33. First, a page is presented to
the user, requesting a name or phrase which could be used to
denote the object being added (step 3302). The page also
gives options to delete an already added string, or to stop
adding strings. The user’s response is checked at step 3304.

If the user chooses to add a new string, the knowledge base
is queried for matching strings (step 3306). If there are no
matches, the string is added (step 3308), and the user is taken
back to step 3302. If one (or more) matches is found, the user
is presented with the unique recognition strings for the cor-
responding objects, and asked to confirm that it is not the one
that he/she is in the process of adding (step 3310). The user’s
response is tested (step 3312)—if one of the matching objects
is the intended one, the loop ends, and that object is returned
(step 3314). If the user is sure that the matching object is not
the one being added, the string is added (3308), and the user
is taken back to step 3302.

If the user’s response at step 3304 is to delete a string, the
string is deleted (step 3316), and the user is taken back to step
3302.

If the response at step 3304 is to stop adding strings, the
user is shown a list of the strings he/she has added, and asked
to confirm that they can all be used to denote the object (step
3318). The response to this message is tested (step 3320). If
the user won’t confirm, then he/she is returned to step 3302
(where any problem strings can be deleted). When the user is
happy with the list of strings to be associated with the object,
the loop ends, and the list of strings is returned (step 3322).

In the preferred embodiment, a count is kept of how fre-
quently each denotational string is used by users of the system
to denote an object. These counts can be used to present
denotational strings representing an object in order of popu-
larity when displaying (say) a profile of the object. The pre-
ferred embodiment also keeps a count of how frequently each
ambiguous denotational string is used to denote each of the
possible objects it may refer to. In situations where one object
is many times more common than another (e.g. a celebrity and
a much less famous person with the same name), it can be
used in some embodiments to assume that the more frequent
choice is intended, thereby saving each user from having to
choose every time. In the preferred embodiment it is also used
to list ambiguous translations in order of likelihood.

2.9.10 Process For Adding Factual Knowledge (Add_Fact)

One of the desirable actions that a user can perform is to
assert new factual knowledge. In the preferred embodiment
this is that a named relationship exists between two named
entities, and, in the case of a non-permanent relationship,
when that relationship exists (i.e. they are also prompted for a
timeperiod). In the preferred embodiment, negative relation-
ships can also be asserted.

Again, this is achieved by a sequence of prompting screens
presented to the user asking for the fact and (if necessary) the
timeperiod. The entire assertion is translated into natural lan-
guage using unique recognition translations for confirmation
prior to being recorded in the knowledge base. If any object or

20

40

45

50

92

relation is missing during this process the system will digress
to prompt for the information necessary to add this entity to
the knowledge base.

The process by which relationships are asserted is illus-
trated in FIG. 34. The process begins (step 3402) by request-
ing the fact in natural language (“as you would tell it to
another person™). The system attempts to parse the string
entered by the user (step 3404). If it can be parsed, the ele-
ments of the fact (at least left object, relation, and right object,
but possibly also negativity and temporal information) are
extracted from the string (step 3406). Translation is described
in section 2.6.9. If the user’s string is not understood, then the
user is presented with a page (step 3408) where the left object,
relation, and right object are entered as separate elements
along with detailed explanation and examples. A check is
made that all three elements have been entered (step 3410)—
once they have, the process can continue.

The next stage is to identify each of the three fact elements.
First, the relation is sent for identification by the “select_ob-
ject” process (step 3412—described in section 2.9.6). Once
the intended relation has been established, the left and right
classes of the relationship are found (step 3414).

The first objectis then sent for identification by the “select_
object” process (step 3416)—it is sent with the left class of the
relationship as a parameter to ensure that “select_object” only
looks for relevant objects. Next, the second object is sent to
“select_object” with the right class as a parameter (step
3418).

A translation of the fact is created (using the unique rec-
ognition string of each element) and shown to the user for
confirmation (step 3420). The user’s reaction is tested (step
3422). If the user does not agree that the fact as stated is the
fact that he/she is intending to add, then the process returns to
the beginning.

If the user confirms the fact translation, the process con-
tinues by testing whether or not the fact is a permanent one,
and acts accordingly (step 3424). If it is not inferred to be
permanent, a timeperiod for the fact is requested using the
“select_timeperiod_for_fact” process (step 3426—described
in section 2.9.12).

Next it is necessary to establish the source (and preferably
an ‘animate’ source) for the assertion that is about to be made.
Under some circumstances (if the process is called when a
user is adding him/herself to the knowledge base during
authentication), the source for the assertion might already
have been set as the user. The process tests to see whether the
source is the user (step 3428). If the source is the user, then
he/she can be attributed as the animate source for the assertion
(step 3430). If the source is still unknown, the user is asked to
specify a source (step 3432). The user can state that he/she is
the source, or provide a different source perhaps a named
individual or work of reference, or the URL of a web docu-
ment. The user’s response is examined (step 3434). If the user
has stated that he/she is the source, a check is made to see
whether he/she is logged in (step 3436). If not, he/she is
required to log in (step 3438—the “authenticate” process
illustrated in FIG. 19 and described in section 2.8). Once the
user’s identity has been established, he/she can be attributed
as the animate source for the assertion (step 3430). If the user
is not the source of the fact, then the specified source must be
identified and an attempt made to establish an associated
animate source (step 3440—illustrated in detail in FIG. 38
and described in section 2.9.13).

Finally (step 3442), the relationship, the source of the
assertion, and (if relevant) any timeperiods are asserted. If the
fact is already known to the knowledge base, then this asser-
tion will count as an endorsement.

US 9,098,492 B2

93

Facts can also be parsed from complete natural language
assertions typed by the user into the main system prompt in
some embodiments (e.g. “Paris is the capital of France”). If
the translation system translates this into an assertion of a fact
the add_fact process can be started at step 3406 exactly as if
the initial assertion had been typed into the prompt corre-
sponding to step 3402

See section 2.6.9 for more details on how these are trans-
lated. When this method cannot correctly parse the fact being
asserted, the method described above can be used as a fall-
back.
2.9.10.1 Partially Pre-Specified Fact Addition

In the preferred embodiment, the add_fact process can be
called with one or more of the three objects already filled in.

An example of where this is useful is on profile screens
where knowledge is unknown. For example, on a person
profile there may be a slot for “place of residence”. The profile
was unable to get this knowledge from the knowledge base so
instead creates a link with the person’s id, the relation [is
resident in] and a blank. A user visiting the profile who knows
the place of residence can then simply click on the link to be
taken

An example of this is illustrated in FIG. 35.

A user has typed “Victoria the Empress of India” into the
general prompt the system has translated this into a request
for a profile screen for the historical figure [queen victoria]
and displayed the default profile which is the default [human
being] profile (3502).

One of the slots on this profile is for the subject’s place of
birth. The query that was designed to display this information
returned “unknown” so the template created a link which
would allow the user to specify it (3503). The link points to
the add_fact controller script with parameters encoded speci-
fying the two known elements of the fact to be added.

add_fact recognises these parameters and instead of
prompting for all three elements, only prompts for the one
that is missing (3504). (Other embodiments may use the left
or right class of the known relationship to phrase the prompt
better, e.g. “What geographical area is the birthplace of
Queen Victoria of the United Kingdom of Great Britain and
Ireland?”.) The user enters “London”.

add_fact uses select_object to locate the correct entity and
asks for confirmation of the fact to be added (screen 3506).
After source selection and confirmation of the fact being
added the user opens the profile again (3508). This time the
knowledge is in the knowledge base and the profile correctly
shows her place of birth.

2.9.11 Core Facts

According to various embodiments with the Principal
Class concept, each Principal Class has certain core facts
associated with it. This is knowledge which varies between
members of the class and which is considered important.
When a new object is added to the knowledge base, the
preferred embodiment will also prompt the user for the core
facts associated with the Principal Class of the object. For
example, with the Principal Class [human being]|, the pre-
ferred embodiment will prompt for the sex of the object
(person) added and the date of birth.

In alternative embodiments, core facts are associated with
any class and instead of prompting for the core facts associ-
ated with the Principal Class ofthe object, a search is made for
the most specific class which has core fact information asso-
ciated with it.
2.9.11.1 Process for Adding Core Facts (Add_Core_Facts)

FIG. 36 shows the steps involved in adding core facts about
an object. First of all, it is necessary to establish whether or
not any core facts are associated with the object’s Principal

20

25

30

40

45

94

Class (step 3602). If no core facts are so associated, the
process ends. Otherwise, an array of the core facts is created
(step 3604), and a loop is entered between step 3606 (which
requests the answer to each core fact in turn) and step 3612
(which checks to see whether any core fact questions remain
to be asked).

Once a core fact question has been asked (3606), the
answer is sent for identification by the “select_object” pro-
cess (step 3608—described in section 2.9.6). The user’s
answer can then be combined with the current object and the
relation relevant to the core fact to make an assertion using the
“add_{fact” process (step 3610—described in section 2.9.10).
‘When no more core fact questions remain to be asked (3612),
the process terminates.

2.9.12 Selecting a Time Period (Select_Timeperiod_for_
Fact)

Many relationships in the knowledge base require a tem-
poral partner. Consequently, a user wishing to assert a tem-
porary relationship must be provided with a mechanism to
identify the relevant time period for that relationship. In the
preferred embodiment the process of selecting a [timeperiod]
object is called whenever the user directly asserts a relation-
ship of a temporary nature (such as [is married to]), or when-
ever an object is added which is a member of a class defined
as being temporary (such as [politician]).

FIG. 37 illustrates the process in the preferred embodiment
of'selecting a time period. The user is first asked whether the
fact is true now (step 3702), and is then asked for the earliest
time when the fact was true (step 3704). The “select_object”
process is initiated with the string entered by the user and the
class [timepoint] as parameters (step 3706—‘select_object”
is described in 2.9.6). “select_object” returns a [timepoint]
object.

Ifthe user has said that the fact is true now (step 3708), the
second timepoint will be [iafter| (step 3710), but if the fact is
not true now, the user is asked for the latest time when the fact
is true (step 3712). As before, the “select_object” process is
initiated with the string entered by the user and the class
[timepoint] as parameters (step 3714).

After the second [timepoint] object has been established, a
check is made (step 3716) to see that the timepoints make a
reasonable time period (the second must be later than the
first). A problem encountered at step 3716 results in the user
being shown an explanatory message and a request to enter
the initial timepoint again (step 3718).

Once a reasonable time period has been established, it is
useful to ascertain whether there is also a prior time period
(when the fact is not true). For example, if a user wishes to
assert that two individuals are married, and is able to give a
date for the marriage (however accurately), then it is reason-
able to assert at the same time that the couple were not
married for all time before that starting timepoint. An alter-
native embodiment would omit this stage, and proceed
straight to the creation of the [timeperiod] object at step 3732.
In the preferred embodiment, however, a check is made on the
starting timepoint (step 3720). If it is [time zero] or [earliest
meaningful point], then clearly a prior time period is not
possible, and the process can proceed straight to the check at
step 3728.

Ifthe starting timepoint is something other than [time zero]
or [earliest meaningful point], then the user is asked whether
the fact might have been true before the starting timepoint
(step 3722). The user’s response is tested (step 3724), and if
he/she is confident that the fact is not true, the process creates
a prior [timeperiod] object from [time zero] to the starting
timepoint (step 3726) which can be used to assert the inverse
of the fact.

US 9,098,492 B2

95

In the preferred embodiment, just as a prior [timeperiod]
object might be created, so a check is made to see whether the
second timepoint is [iafter] (step 3728), and if it is not, a
[timeperiod] object for the period after the fact ceased to be
true—from the second timepoint to [iafter]—is created (step
3730). Finally the [timeperiod] object is created (step 3732)
and the process terminates.

2.9.13 Source Selection

In the preferred embodiment all assessments are associated
with a source. The same method for obtaining the source
information is used by the “add_object”, “add_relation”,
“add_class”, and “add_fact” processes. This method is illus-
trated in FIG. 38.

The behaviour will depend on whether or not the user has
supplied a URL as the source, so the user’s input is tested
initially (step 3802). If the source specified by the user is not
a URL, the “select_object” process is initiated in order to
identify, or, if necessary, add the source as an object (step
3804—described in section 2.9.6). A check is then made on
the source (step 3806) to establish whether it is animate (a
person or an organisation) or inanimate (e.g. a book).

If'the source is inanimate, then an attempt is made to find an
animate source behind the specified source (if, for example,
the source is a single-author book, then this animate source
would be the author). A check is made to see whether the
knowledge base already knows the animate source associated
with the source specified by the user (step 3808).

If the source specified by the user is a URL, the user is
shown the content of the page at that URL and asked to
confirm that that page is the intended source document (step
3810). If it is, a copy of the content is stored locally and
associated with an ID, unless the same page is already held
(step 3812), and a check is made to see whether an animate
creator source—in most cases this will be the site’s webmas-
ter—is already known for the document (step 3808).

Ifthe animate source is not already known, the user is asked
whether he/she knows of an animate source, and, if so,
whether this animate source is responsible for all knowledge
obtained from the specified source or just this particular piece
of' knowledge (step 3814). The user’s response is tested (step
3816). If the user does know of an animate source, the
“select_object” process is initiated in order for the user to
specify that animate source (step 3818—described in section
2.9.6). If the user has said that the animate source is respon-
sible for all information in the original source, then this fact
should be asserted (step 3820), so that steps 3814 to 3820 can
be omitted by future users who give the same source.

Finally a source ID is returned: of the animate source if one
has been established (step 3822), or, failing that, of the inani-
mate source (step 3824).

2.9.14 Adding Generators

In the preferred embodiment dumb generators can be
added to the system via a web-based editing page allowing the
generator to be added to the list and tested by the user.

The user who has created the generator is associated with
the generator and prior to editor approval the generator will be
ignored by the query answering system for all users other than
the user who has submitted the generator. In this way, any
mistakes or errors with the generator will only affect the user
who is testing it.

After editor approval the generator will be used by the
query answering system for all queries.

For smart generators the system also needs to permit the
addition and testing of tools.

The preferred embodiment achieves this by allowing users
to add tools in an interpreted language which can run on the
server but without having access to any sensitive files. The

10

20

25

30

35

40

45

50

55

60

65

96

server would also terminate any script that was running for
anything other than short timeout to prevent scripts which
loop. Access to the network is also controlled.

The language Python (http://www.python.org/) is a suit-
able scripting language used by the preferred embodiment.
The interpreter is widely available, freely licensed and infor-
mation about how to incorporate it into a server is widely
available.

The Python script that implements the tool can again be
edited and tested by the user prior to approval by an editor. On
approval the tool is then available to be used in generators.
Prior to approval it will only be used in queries run by the user
who submitted the tool so that it can be tested.

2.9.15 Adding Profile Templates

The ability for users to add profile templates works in a
similar fashion to generators though as there is less security
risk, various embodiments will optionally allow unapproved
profiles to be seen and used by users. On approval the profile
will become part of the system and used automatically in the
case where it is the only profile for the most specific class of
an object.

Creation of the profile can be achieved by a web-based
editor or the template can be created offline and uploaded to
the system.

2.9.16 Adding Translation Templates

The addition of translation templates can be achieved in a
very similar manner to adding dumb generators.

The templates, pattern and generators, are added via a
web-based editor and initially only used in response to trans-
lations by the user who added it to allow testing.

Once the user is happy, a web-based command allows the
user to submit the template for editor approval. On editor
approval the translation template is used for all translations by
the complete user base extending the functionality of the
system for everyone.

Various embodiments can draw attention to existing trans-
lation templates and thus educate users in adding them by
producing an explanation of how questions were translated
when a translation is successful (containing at least a link to
the template used to do the translation). The fall-back strategy
when a question was not understood can also provide a link to
the add translation process with instructions thus providing
the user with a mechanism to correct and improve the prob-
lem for all users.

2.10 User Assessment

As used herein “user assessment” is the facility for users of
an embodiment of the invention to provide information on the
veracity of knowledge already present in the system. User
assessment is an optional but desirable feature of various
embodiments as it enables users to draw attention to facts
which are incorrect and/or to increase the confidence in facts
which are true.

In the preferred embodiment, users can both endorse and
contradict facts. When doing so they use the same source of
knowledge methodology as is used when asserting new facts.
(See section 2.9.13.)

When a user adds a fact that is already in the static knowl-
edge base, the preferred embodiment simply considers this a
user endorsement of the fact and doesn’t create a new fact in
the static knowledge base. The initial assertion of the fact also
counts as an endorsement of the fact by the asserting user.

The preferred embodiment also enables users who are con-
tradicting a fact to label the original fact as probably asserted
abusively. By distinguishing between facts which were
asserted in good faith but are wrong in error and facts which
were probably asserted to be mischievous and/or abusive, a
number of options become available. These include taking

US 9,098,492 B2

97

sanctions against the user entity reporting the fact abusively,
having a lower threshold for suppression of other facts
asserted by this user and suppressing the abusively asserted
fact faster than would otherwise have been the case.

The preferred embodiment also enables users of suffi-
ciently high rank to label their assessment as final. Once done,
the status of the fact (true or false) is locked down and cannot
be changed by further assessments from users of lower rank.
This facility enables a highly ranked user such as a staff
member to resolve an issue with a fact immediately. For
example, a staff member can make an obviously abusively
asserted fact immediately invisible.

In the preferred embodiment user assessment is imple-
mented by maintaining an assessments database table which
records each endorsement and contradiction and includes the
following information: the fact being user assessed; whether
it is an endorsement or contradiction; the date and time of the
action; the reporter (i.e. the id of the user who is performing
the assessment); the source of the information (which may
also be the user); optionally the id of the document which this
assessment is based on (if there is one). (If a document is
present, the source is the entity responsible for the document);
whether the assessment has been labelled as abusive; whether
the assessment has been labelled as final; any text explanation
entered by the user at the same time (this can be used to
explain the assessment further if the user wishes and appears
on the fact profile).

The user assessments of a fact are combined together to get
an overall picture of the veracity of the fact. In various
embodiments, once a threshold has been reached the fact is
also closed for further user assessment. This gives some sta-
bility to the system as facts for which there is an overwhelm-
ing certainty of them being true or false cannot be changed.
This is especially important for certain core facts used fre-
quently by the system in numerous situations such as prop-
erties of common relations.

Should a fact be locked down in an incorrect state, various
embodiments would however, allow a user to draw this issue
to the attention of staff for correction.

In one embodiment, user assessment information is com-
bined together by attaching a positive score to each endorse-
ment of a fact and a negative score to each contradiction and
setting the truth and visibility of the fact based on the sum.
The magnitude of the score for each endorsement and con-
tradiction is determined by the track record of the user making
the assessment. For example, a new user could be given a
score of 10 while an experienced user who had been using the
system for many months with a track record of accurate
assessment could be given a score of 200. This embodiment
does not allow repeated endorsements by the same user to
increase the sum but users can be permitted to change their
endorsement by contradicting a fact they have previously
endorsed etc.

In the preferred embodiment, each fact is labelled as true/
false and visible/invisible in the table in which they are stored.
true/false is the veracity of the fact: whether the system
believes it is true. visible/invisible is whether the fact is nor-
mally visible to the query answering system. untrue facts are
always invisible. Other embodiments could remove untrue
facts from the knowledge base.

Various embodiments also take into account fact exposure
information in the assessment of the veracity of the fact from
user assessments. Fact exposure information is information
about the events when the fact was shown to users and the
users were given an opportunity to apply a user assessment.
For example, if a user has asked a question and the summary
explanation has been displayed showing the fact and giving

20

25

30

40

45

50

60

98

the user a chance to contradict it, that would be an exposure of
the fact to the user. By combining exposure information with
user assessments the system can obtain a superior under-
standing of the likely veracity of the fact. For example, a fact
which has been exposed one thousand times and received five
user contradictions is more likely to be true than a similar fact
which has also received five contradictions but has been
exposed far fewer times.

One example embodiment of how the system can incorpo-
rate fact exposure information into a scheme for assessing the
fact is to consider each exposure of a fact without a user
assessment action as a form of tacit endorsement of the fact
and to count these in a similar way to actual endorsements by
the user but with a much smaller weight.

Various embodiments have special handling for true-now
assertions including taking into account the date that the
endorsement or contradiction took place. The assertion of the
negative version of the true-now fact suggests a point when
the fact may have ceased to be true. By hypothesising each of
these candidate points and summing subsequent user assess-
ment data a similar technique to that described above can be
used to assess true-now facts and determine that they should
be suppressed or removed. In various embodiments true-now
facts are thus always challengeable. When the true-now factis
a temporal partner closed with the [iafter] object the closing
timepoint of overlapping similar facts provides candidate
change points.

2.10.1 Process for Endorsing/Contradicting Knowledge

FIG. 39 illustrates the preferred embodiment user assess-
ment process of endorsing or contradicting a fact in the
knowledge base. The process is always initiated with param-
eters for the fact to be assessed and the type of assessment
(endorsement or contradiction). First, a check is made as to
whether assessment of the fact is allowed (step 3901). Certain
facts are marked as being unchallengeable, while others are
suppressed for knowledge addition. If assessment is not pos-
sible the process terminates and the user is given an explana-
tion.

Then it is necessary to check whether the user is currently
logged in (step 3902), and if not, he/she is required to log in
(step 3904—the “authenticate” process illustrated in FIG. 19
and described in section 2.8).

Next (step 3906) the system determines whether the fact is
transient (or is itself a temporal partner to a transient fact). If
it is not, the user can be taken directly to the step where a
source is requested (3922). If the fact is transient (or a tem-
poral partner), it will be necessary to show the user all the
other facts associated with the fact, and find out exactly what
it is that the user wishes to endorse or contradict (for example,
if a user follows a link to contradict the fact that two people
are married, it is not clear whether he/she is contradicting the
fact that they are married now, or the fact that they have ever
been married). The basic “subject” fact associated with the
fact being assessed is found, and a “time history” for that fact
is constructed (step 3908), indicating periods when it is true,
when it is false, and when its veracity is unknown. The user is
shown a schematic representation of this time history (step
3910), and given various options (to endorse or contradict
particular periods, to contradict the basic fact in its entirety, or
to make changes to the time history). If the user has chosen to
contradict the basic fact (step 3912)—for example, saying
that two people were never married, rather than just not mar-
ried now—then he/she is taken straight to step 3922 (speci-
fying a source). If the user is not contradicting the basic fact,
the process continues by checking whether the user has asked
to change any of the timepoints associated with the fact (step
3914). Ifthere are no timepoints to change, the process checks

US 9,098,492 B2

99

that the user has endorsed or contradicted at least one of the
periods (step 3916), and if not, he/she is taken back to the
page at step 3910 with a message requesting at least one
endorsement, contradiction, or alteration. If there are time-
points to change, the user is asked for them one by one (step
3918), and they are checked for validity. Next (step 3920), a
new “time history” is constructed, based on what the user has
said. If there are any inconsistencies (a fact appearing to be
true and false at some point in time, for example) the user is
asked to resolve them. (Some embodiments will now show a
representation of this new time history to the user for confir-
mation. If the user rejects the new representation, he/she is
taken back to step 3910.)

The user is then asked for the source of his/her knowledge
about the fact(s) (step 3922), and a check is made on whether
that source is the user him/herself or a secondary source (step
3924). If the user is the source, then he/she will be recorded as
the animate source behind whatever assessments and asser-
tions are made (step 3926). If the user is not the source of the
fact, then the specified source must be identified and an
attempt made to establish an associated animate source (step
3928—illustrated in detail in FIG. 38 and described in section
2.9.13).

Finally (step 3930), the information given by the user is
examined, and all assessments and assertions that follow
from it (whether directly or by inference) are made.

2.11 System Assessment

As used herein “system assessment” is the automated
analysis of a fact to determine its veracity using at least
whether the fact is semantically contradicted by other knowl-
edge in (or known to) the system.

The preferred embodiment also determines whether a fact
is superfluous: i.e. whether it can be generated by the system
anyway.

As used herein “interactivity information” is data about
how the fact interacts semantically with other facts in the
system: whether a fact is contradicted or rendered superfluous
by other facts in the knowledge base. A fact which is contra-
dicted is in semantic conflict with one or more other believed-
true facts in the system. A fact which is superfluous can
already be produced by the system. A fact which is “uninflu-
enced” is neither contradicted nor supertluous and thus adds
to the total knowledge of the system.

System assessment is a useful (but optional) component
found in the preferred embodiment. It helps to keep the facts
in the static knowledge base consistent with each other and is
also another weapon to counter abusive or accidental asser-
tion of untrue facts by users. Embodiments making use of
user assessment data but not including system assessment
will need an automated process to combine the user assess-
ment data in determining the veracity of the fact (as described
above). However, in the preferred embodiment user assess-
ment data is used in combination with interactivity informa-
tion in assessing a fact.

To generate interactivity information for a single fact in the
preferred embodiment, the system assessment component
creates a truth query in full mode corresponding to the fact.

If'the fact being assessed is already in the static knowledge
base it also tells the query answering system to ignore it when
answering this query. Alternatively, the fact can be tempo-
rarily suppressed or removed from the static knowledge base
while it is being system assessed.

The query is then executed. If the result is “no”, the fact is
contradicted. Ifthe result is “yes” the fact is superfluous. If the
result is “unknown” the fact is uninfluenced.

20

30

40

45

55

100

A variant of this is create an inverse query corresponding to
the negative of the fact. If this query returns “yes”, the fact is
contradicted. This variant may be useful in embodiments
where “no” answers to truth queries are not supported. (See
section 2.5)

In embodiments producing summary explanation informa-
tion, the static facts used in answering the query together are
the ones which render the fact contradicted or superfluous and
are termed “influencing facts” herein.

When the system assessment is done in the course of a user
interaction and user assessment is part of the embodiment,
these influencing facts are displayed to the user and an oppor-
tunity can be given for them to contradict any they disagree
with.

FIG. 40 shows this.

The first thing done is to scan the record of user assess-
ments for this fact (endorsements and contradictions) to cre-
ate a weighted sum (step 4002). The sum initially starts at a
small positive amount, endorsements add to this sum and
contradictions subtract from it. The amount added or sub-
tracted for each assessment is a pre-determined amount based
on the track record of the user making the assessment. The
initial assertion of the fact is considered as an endorsement.
Multiple endorsements or contradictions by the same user are
ignored.

The sum is then used to set provisional values for the
veracity of the fact and its challengeability (step 4004). For
example, a score above zero would set the veracity to true (i.e.
the fact is believed true), and below zero to false (believed
false). Challengeability is set based on the sum being above or
below a much higher threshold. e.g. a sum less than —1000 or
greater than +1000 would make the fact unchallengeable.

Step 4006 creates a simple truth query of just the fact itself
(without fact id) and no query variables.

In step 4008 the query is executed in full mode with expla-
nation. The fact itself is temporarily masked while the query
is being run, e.g. by passing the fact id to the process_query
routine and asking for the static search routine to ignore it.
(Some embodiments may perform system assessment on a
factbefore it is added to the static knowledge base making this
masking step unnecessary.)

The return result of the query is then examined (step 4010).

Ifthe query returned “no” (i.e. the static fact is contradicted
by what would be in the system without it), veracity is set to
false (i.e. the factis believed untrue) and the interactivity is set
to “contradicted” (step 4012).

Ifthe query returns “unknown”, the veracity is left as set by
the user assessments and the interactivity is set to “uninflu-
enced” (step 4014).

If the query returns “yes”, the fact doesn’t appear to add
knowledge to the system that it wasn’table to generate so the
interactivity is set to “superfluous” and the veracity is set to
true (step 4016).

Ifthe query returned yes or no, the concise explanation will
be a list of other static facts which either implied or contra-
dicted the static fact being assessed. The related facts table
showing this relationship is updated with these (step 4018).

Next, step 4020 is done to record the results of this system
assessment in the static knowledge base including the values
for veracity, challengeability, interactivity and visibility. The
visibility is always set to false if the fact is believed untrue and
in some embodiments it will be set to invisible if the fact is
superfluous. The date and time when this system assessment
was done is also recorded for use by the system selecting facts
for periodic reassessment. Some embodiments may choose to
remove untrue facts from the knowledge base rather than just
making them invisible.

US 9,098,492 B2

101

Next a check is made to see whether the veracity has
changed as a result of this assessment (i.e. it is now believed
true when it was previously believed false or vice versa) (Step
4022).

If'the veracity is changed a scan of the related facts table is
made finding facts which are influenced by the one just
assessed (whose veracity has changed) and each of these facts
is recursively system assessed (step 4024). For example, if a
true fact was being contradicted by the fact just reassessed
and the fact is now false, this would resuscitate the wrongly
suppressed fact immediately.

As there may be pairs of facts which influence each other,
this recursive reassessment needs to take care to avoid creat-
ing an infinite loop. One way this can be achieved is to keep
a log of all facts that have been reassessed and for the routine
to return without further recursion if the current fact is in the
log.

An example of system assessment in operation is illus-
trated in FIG. 41

In screen 4102 a user has typed the fact “Florence Night-
ingale was born in Florence” into the first stage of the
add_fact process (see section 2.9.10).

This natural language was correctly translated by the natu-
ral language translation system (see section 2.6) and after
confirmation the fact is asserted.

As part of the fact assertion process a system assessment
was done on the newly added fact. To the user’s surprise, this
system assessment resulted in the new fact being listed as
contradicted. This status and the static facts used to contradict
the fact (taken from the concise explanation of the system
assessment query) are listed (screen 4104). (This embodi-
ment has stored the newly added fact but as it is contradicted
it has been labelled as invisible to stop it from being used in
query responses. An alternative embodiment may have cho-
sen not to accept the fact at all.)

The user examines the list and sees that one of the facts in
the list is wrong. A previous user has incorrectly asserted that
Florence Nightingale was born in England. However, as
insufficient numbers of trusted users have confirmed this fact,
it is possible to contradict it and a “contradict” link is avail-
able to the user (4103).

The user clicks the contradict link (4103) and is taken into
the user assessment subsystem where the user asserts the fact
is false. The user assessment posts a contradiction in the
assessments table for the “England is the birthplace of Flo-
rence Nightingale” fact and for good measure asserts the fact
that “England is not the birthplace of Florence Nightingale”.
The results of this activity is shown in screen 4108.

As it happens the user’s contradiction of the incorrect fact
has been enough for the system to change the veracity of the
fact from true to false. This has automatically resulted in the
originally asserted, invisible fact (“Florence is the birthplace
of Florence Nightingale”) being system assessed again and as
the knowledge base no longer contradicts this fact, it has been
reassessed as true, made visible and is no longer contradicted.

4110 shows the results of the question “Is Florence the
birthplace of Florence Nightingale?”” which is now correctly
answered yes, showing that the original incorrect fact is now
visible.

2.11.1 Periodic Reassessment of Facts

Various embodiments will periodically re system assess
each static fact in the knowledge base. In the preferred
embodiment, this is achieved by having a field in the database
table containing the static facts which gives a date and time
when the fact was last system assessed. Periodic reassessment
is then achieved by calculating the timepoint corresponding
to a threshold time period before the current time (e.g. one

10

15

20

25

30

35

40

45

50

55

60

65

102

week) and doing a SQL SELECT statement which gathers the
ids of all facts which have not been reassessed for this period
ordered by last reassessment time (earliest first). The program
then reassesses each fact in order timing out after a pre-
determined period (e.g. twenty minutes). A cron job is set up
to periodically (e.g. every hour) call this function so facts are
continuously reassessed. Some embodiments may prioritise
certain types of fact for faster/higher priority reassessment.

This periodic reassessment of facts ensures that things are
kept up to date.

2.11.2 Periodic Reassessment of Reporters and Sources

As users are continuously adding facts and citing sources
and as a user’s track record is useful in various embodiments
for assessing confidence or promoting/demoting the user to
various ranks, reporters and sources get periodically reas-
sessed in the preferred embodiment.

This is achieved in a similar manner to the periodic reas-
sessment of facts.

2.11.3 User Initiated System Assessment

In the preferred embodiment users can additionally reas-
sess a factatany time. This is accomplished by a “reassess this
fact’s properties” button on the fact profile (an example is
1409 on FIG. 14). Clicking this button immediately results in
a system assessment being done on the fact and the results
displayed to the user.

2.11.4 More Specific Dates/Timeperiods

An example of how system assessment is useful is with the
accuracy of specified dates.

Sometimes new facts added are not in semantic conflict
with facts that already exist in the knowledge base but rather
are more accurate versions of them.

An example would be a wider timeperiod associated with a
fact than was known previously (e.g. an earlier starting time)
or a more specific date of birth for a person.

With knowledge generation and system assessment this is
readily achieved by the user of generators which generate the
less specific fact from the more specific, e.g. a temporal
partner assertion that a fact is true for the timeperiod [timep-
eriod: [timepoint: [“19307]]; [iafter]] can generate the same
fact with the timeperiod [timeperiod: [timepoint: [“1990”]];
[iafter]]. This means that if some were to initially assert the
1990 timeperiod and someone were to later assert the 1930
timeperiod, the earlier fact would become superfluous and
invisible. It also means that overlapping timeperiods for
opposite facts can result in facts being contradicted.

Similarly if someone were to assert a year as a date of birth
and then someone were to later come along and provide the
precise calendar date, the original less specific fact would
become superfluous leaving the more specific one published.

The generators for these examples are here:

The following generator accesses the tool that calculates
whether a timepoint or timeperiod is a more accurate version
of another one and generates the fact if it is.

[tool.ismoreaccuratel @semscript.com]
generator

=> ismoreaccuratel @local

a$ [is a more accurate version of] b$ *

This generator would for example, generate a fact asserting a
year as a birthdate from a fact asserting a date in that year.

[generator.ismoreaccurate2@semscript.com|
generator
1$ ~[equals] [is a more accurate version of]

US 9,098,492 B2

103

-continued

[timepoint: ts2] 1§ b$

[timepoint: ts2] [is a more accurate version of] [timepoint: ts$]
=>

[timepoint: ts$] r§ b$ *

Note that in the target line both dates need specifying. This
generator has the effect of rendering less accurate dates super-
fluous when new more accurate dates are specified. [f the new
more accurate date were to ever become considered false (e.g.
after user assessment) the less accurate date would then
become visible again when reassessed. A similar generator
does the same for the right object.

This generator implements the concept of timeperiods
overlapping;

[tool.overlapl @semscript.com]

generator

! one timeperiod overlapping with another
=>overlapl@local

a$ [is overlapping with] b$ *

(a similar generator implements the negative relation)
This generator implements the concept of one timeperiod
falling within another:

[tool.containedwithinl @semscript.com]

! one timeperiod contained within another.
generator

=> containedwithinl@local

a$ [is contained within] b$ *

(and again an almost identical one implements the negative
relation)

This generator makes the smaller timeperiod for a temporal
partner superfluous:

[generator.tperiodimpliesl @semscript.com]
generator

$ [applies for timeperiod] tpl

tp$ [is contained within] tpl

=>

$ [applies for timeperiod] tp$ *

And this one generates contradictions to facts where the
timeperiod overlaps the negative version of their subject fact:

[generator.tperiodimplies2 @semscript.com]
generator

f$:arb

f2:a~rb

2 [applies for timeperiod] tpl

tpl [is overlapping with] tp$

=>

$ ~[applies for timeperiod] tp$ *

2.11.5 Assessment of Veracity (Alternative Embodiment)
As discussed in section 2.11 above, the preferred embodi-
ment assesses veracity for uninfluenced facts by summing up
a score based on each endorsement and contradiction of the
fact with the original assertion of the fact counting as an
endorsement. Endorsements add a positive score, contradic-
tions a negative score. If below a threshold the fact is consid-
ered false and is no longer used in query answering, otherwise
it is considered true. If above a high threshold the fact is

10

15

20

30

35

40

45

50

55

60

65

104

considered definitely true and user assessments are no longer
accepted. The weight of each endorsement or contradiction is
assigned by the track record of the user—users with a long
track record of providing good knowledge having a high
contribution.

The preferred embodiment only uses the reporter informa-
tion, partly for simplicity and partly because frequently users
have a choice of sources for a fact and are able to at least
partially assess the reliability of a source themselves. By
always penalising the reporter even if it is the source that is
wrong, the reporter has an incentive to find reliable sources.

However, an alternative embodiment can attempt to rate
reporters and sources by their track record and take an
approach based on the calculated probability of a fact being
true using this information. This is an alternative philosophy
where a user is largely inoculated against the negative conse-
quences of accurately citing inaccurate sources.

An embodiment using this approach is now described:

The method used to calculate confidence for a fact is
designed to approximate and communicate the probability
that the fact asserted is true. Every entity is given a probability
that any fact asserted by it is true. This probability is estimated
initially from experience for a new entity and then adjusted as
that entity develops a track record of facts and a more accurate
figure can be calculated. In various embodiments the initial
probability may also be also be estimated from the class the
entity is in. For example, a member of the class [tabloid
newspaper| may have a lower initial confidence score than a
publication in the [broadsheet newspaper| class. In other
embodiments an editor may adjust or set the initial probabil-
ity based on his/her personal assessment of the reliability of
the source.
2.11.5.1 Single Direct Source

In the case of a fact being asserted directly by a single user
entity, the confidence figure for the fact being true is deter-
mined with the formula

Pﬂ:pul

where p,, is an estimate of the probability that fact f1 is true
and p,,; is an estimate of the probability of a fact asserted by
user ul being true. p,,; is initially estimated from experience
with other new users and then modified up or down as the user
establishes a track record of asserting facts whose veracity or
otherwise is later established. One method is to look at the
number of past facts that have been shown to be true (T,,) for
aparticular user, the number that have been shown to be false
(F,) and use the ratio of the two to calculate p, with this
formula:

P~ (CA 0 ONNTAF D)

where r,, is the initial assessment of the probability and b is a
threshold number used to buffer the calculation from big
changes in probability when the track record is small, e.g. b
could equal 100.

This formula means that the initial estimate dominates
until the point where the user establishes a track record, after
which the initial estimate becomes less and less important.

For example, supposing r,, was estimated at 0.6, b is set to
100, and the user has asserted 9 true facts and one that turned
out to be false (the user is still relatively new to the system), so
T,is9and F,is 1.

In this case p,, will work out at (9+60)/(9+1+100) or 0.627,
only slightly better than the initial estimate.

However, supposing the user continues his/her/its track
record of beating the initial estimate and sometime later has
927 true facts and 3 false.

US 9,098,492 B2

105

In this case p,, will work out at (927+60)/(927+3+100) or
0.958, i.e. the user’s track record has greatly improved the
confidence the system now has in its assertions, and the initial
estimate now only has a small effect.
2.11.5.2 Multiple Direct Sources

To assess the confidence for a fact when other users have
asserted the same fact is done by estimating the probability of
the fact being true. This is one minus the probability that it is
false. If several independent sources assert a fact, the prob-
ability the fact is true is:

1-(1-p(1-p2)(1-p3) . . . (1-p,)

Where p,.is an estimate of the probability that a fact asserted
by entity k is true.
2.11.5.3 Indirect Sources

When an indirect fact is asserted, the probability that the
fact is true when looked at by itself is p,*p,, i.e. to be true it
has to be the case that the user is accurately asserting that
entity e asserts the fact, and that entity e is asserting the fact
correctly. The confidence figure for entity e is calculated
using a similar method to that for a user entity.

Where user entities assert that another entity asserted a
fact, the ultimate entity asserting the fact is considered for the
purposes of calculating confidence in the same way as a user
above. The difference is that the one or more users asserting
this entity as the source of the fact are first assessed to estimate
a probability that the assertion was actually made, and this is
incorporated into the calculation.

To put it another way, the probability of two facts is calcu-
lated. First, that the entity did assert the fact (in other words,
the magazine did actually say what the user says it did) and
secondly that the fact asserted by the magazine (say) is true.
The confidence of each of these being true is assessed using
similar methods to the case when the facts are asserted
directly by the user. These two confidences are combined
using normal probability calculations and the methods
described herein.
2.11.5.4 Independence of Sources

An enhanced version of the formula in some embodiments
also considers the possibility that the sources are not inde-
pendent. For example, the different users are collaborating for
fraudulent reasons, or have incorrectly asserted the knowl-
edge as coming directly from themselves when in reality there
is a single source. An indirect version of this would occur
when two newspapers both publish the same story and one
newspaper is using the other as its only unacknowledged
source.

In this situation an estimate of whether the users (or indi-
rect entities) are independent is first used, estimated from
experience similarly to the way described above. This prob-
ability is i. The probability of the users all being the same
source is first calculated. In the preferred embodiment this is
done by calculating the mean of all the probabilities which
would have been the case if each user had asserted the fact in
isolation. Alternative embodiments take the highest or lowest
probability and use that. If a is the probability assuming all
sources are independent and b is the probability assuming all
sources are the same, an overall confidence figure can be
calculated using the formula: ia+(1-i)b.
2.11.5.5 Assessing Veracity

Assessing whether a fact is true or false for the purposes of
calculating a user confidence score can be done by looking
solely at facts approved or rejected by an editor, or at facts that
have been verified by other users subsequently asserting iden-
tical facts which together resulted in the assertion being con-
sidered true. In embodiments where a confidence figure is
involved the count of true and false facts can be derived from

10

15

20

25

30

35

40

45

50

55

60

65

106

summing their probabilities, e.g. 10 facts each of which has
been calculated at 90% likely to be true from other sources
would count as 9 true facts and 1 false fact.

Because user entities are rated partly by their track record
of asserting true and false facts, some embodiments also
provide an incentive for a user to both assert knowledge and
to take great care that the facts asserted are accurate.

2.12 Preventing Abuse

Various embodiments including the preferred embodiment
include one or more abuse prevention mechanisms to prevent
abusive assertions of knowledge (new facts or user assess-
ments).

Examples of the abusive assertion of knowledge include
deliberately asserting incorrect facts or making false user
assessments, particularly ones designed to cause distress to
other users or cause other problems.

System assessment and user assessment go part of the way
to addressing these issues but other techniques have utility in
certain embodiments.

A technique used in various embodiments is to label certain
patterns of knowledge as prohibited. Once facts have been
identified as prohibited they can either be refused before they
are added or suppressed from use in answering queries once
they are added. In the preferred embodiment this is achieved
with facts in the knowledge base which specify such patterns.
(Alternative embodiments could store these patterns in a dif-
ferent location.) For example:

[suppressed for knowledge addition] [applies to] [fact pattern: [object
unspecified]; [is an instance of]; [objectionable human being]]
[suppressed for knowledge addition] [is an attribute of scope] [fact
pattern].

[fact pattern] is a parametered class which describes facts in
terms of patterns of known and unknown objects. In the above
example, all facts of the form:

X [is an instance of] [objectionable human being]

are suppressed.

[objectionable human being] is a subclass of [human being]
reserved for people who are disliked. In the preferred embodi-
ment there are (naturally) no assertions of members—its rea-
son for being in the ontology is so additions to it can be
prohibited (if the user could add the class it would be harder
to prohibit additions of members in advance).

Denotational strings for the class include all common abu-
sive words, so someone asserting that their boss is a “jerk”
(say) can be understood. (To prevent the user from attaching
the word “jerk” to another new class, the pattern [fact pattern:
[“jerk™]; [can denote]; [abject unspecified]] can also be sup-
pressed along with similar translation patterns [commonly
translates as] etc.)

The preferred embodiment also provides an explanation
for use when a user attempts to add a suppressed fact. This is
done with facts of the form:

[“too subjective to be allowable™] [is the reason for the suppression of]
[fact pattern: [object unspecified]; [is an instance of]; [objectionable
human being]]

FIG. 42 shows an example of these abuse prevention mea-
sures in operation.

In screen 4202 the user has maliciously typed “William
Smith is a pig” into the system’s general prompt.

US 9,098,492 B2

107

The translation system has correctly translated this into
two possible interpretations (shown on screen 4203):

The assertion that William Smith is an objectionable per-

son (4204)

The assertion that William Smith is a farm animal (4210)

(Embodiments containing a substantial number of people
would probably need to do some ambiguity resolution on the
person as well, as the name is fairly common. This is an
example using a fictional person for illustrative reasons.)

Screen 4206 shows what happens if the user selects the first
of these choices (link 4204)

After source selection the add_fact system matches the fact
to a fact pattern that is [suppressed for knowledge addition]
and thus refuses to add it to the static knowledge base at all,
printing out the reason. This is shown in screen 4208. (An
alternative embodiment could record it in the system but not
use it for query responses.)

4212 shows what happens if the user selects the second link
on screen 4203 (link 4210).

Again the system asks for a source, but this time the fact
doesn’t match any suppressed pattern and the fact is added to
the static knowledge base and system assessed. However, the
system assessment discovers that the fact is contradicted and
the output of this contradiction including all the static facts
which together are in semantic conflict with the new assertion
are shown (screen 4214). As all these facts are unchallenge-
able there isn’t actually anything the user can do. Even if they
were, they would be unlikely to change the veracity of any of
them by themselves unless they were a trusted user.

Theuser clicks on the fact they just asserted (link 4215) and
this opens a profile of the newly added fact (4216).

Screen 4216 shows that the fact they just added is believed
false, invisible and contradicted (i.e. it is not being used to
answer queries and is not displayed) so again the user has
been thwarted.

Furthermore, this incorrect fact can now be used to attach
a lower level of trust to assertions and endorsement/contra-
dictions made by this user in the future.

Various embodiments can also implement a “soft” form of
this technique so that facts that match the pattern are allowed
but are immediately flagged for rapid review by an editor.

Alternatively or additionally facts so matching can use
deferred publication protocol (see section 2.9.2.2) instead of
immediate publication protocol (section 2.9.2.1).

This soft suppression could be used for facts which have
significant potential to be abusive but can nevertheless be
true. Examples would include asserting that a new geographi-
cal area was a US State long after all 50 states had already
been added or asserting a date of death for a prominent
unpopular politician.

Another similar technique is the attribute [class is com-
plete] which can be applied to certain classes, e.g.

[class is complete] [applies to] [boolean]

The add_object process will refuse to allow new objects to
be added to any such class (or subclass of such a class).

This prevents someone from using add_object to add (say)
a third Boolean value or a 13th calendar month. The add_fact
process also needs a check for facts of the form x [is an
instance of] y where this attribute applies to class y.

2.13 Knowledge Contribution Incentives

Various embodiments include one or more incentive
mechanisms designed to motivate users to add knowledge to
the system. Desirably this knowledge should be relevant,
useful and accurate.

10

15

20

25

30

35

40

45

50

55

60

65

108

The various methods that can be included in such incentive
mechanisms are now disclosed:
2.13.1 League Table

One incentive is to publish a ranking of entities who have
contributed the most to the system. Various embodiments
make this publication optional: users could exclude them-
selves from this list if they chose. Such a list can motivate
some of the higher contributors by encouraging a competitive
spirit and being a public display of gratitude. Being high
ranked could give personal kudos and may lead (in some
embodiments) to becoming an editor.

One’s track record of adding facts can be displayed in a
[human being] profile template focussing on statistics and
contributions. An example is shown in screen 1414 in FIG.
14.

2.13.2 Payments

Other embodiments motivate users by promising and pay-
ing commission on earnings derived from the commercial
exploitation of the knowledge that they contribute over a
named time period.

These ideas require a measure of how much has been
contributed. One embodiment simply counts facts added to
the knowledge base by a user. Embodiments where facts are
assessed as being true or false or given a confidence score use
these to calculate a count of true facts.

Inthe preferred embodiment ranking is done by calculating
how often facts contributed by a user are referenced when
processing queries submitted by users of the system. This can
be implemented simply by incrementing a count each time a
particular fact is used in answering a query. A usage count
method has the virtue of encouraging users to focus on knowl-
edge that other users are interested in looking up. A pure count
method may encourage users to add large quantities of knowl-
edge that nobody is interested in. Various embodiments may
additionally publish questions/queries that users have sub-
mitted where an answer wasn’t found, in order to encourage
users to contribute the knowledge missing in these cases.

Other embodiments combine both this usage count with a
count of facts contributed using a weighted sum. Other
embodiments further distinguish between routine facts used
as part of the query-answering process (such as a common
relationship being symmetric) and facts that are directly part
of the knowledge the user was attempting to discover. Such
critical facts are weighted more highly.

The preferred embodiment also has a mechanism where
users can draw aspects of the published knowledge to the
attention of an editor. In various embodiments this is accom-
panied either always or in certain circumstances by the pay-
ment of a fee for consideration. In embodiments where both
types of contact are permitted, the ones accompanied by a fee
are given a high priority. The petition could be one asking for
an asserted fact to be rapidly widely published.

2.13.3 Focusing Users on Needed Knowledge

When users are incentivised to add knowledge that is of
maximum use to other users (e.g. the financial, commission-
based incentive above) another method used in various
embodiments is to log all requests which cannot be answered
from knowledge in the knowledge base. This log is also
augmented with a record of whether the requests are indepen-
dent (submitted from different computers/people) and the
time of the request, and enables a count to be made of how
often this request has been made. If knowledge is added that
subsequently allows the query to be answered, the time will
show which requests should still be considered not known
(ones submitted before the earliest time the query was known
to be answerable are no longer an issue). In another embodi-

US 9,098,492 B2

109

ment all identical requests can be updated with a Boolean flag
or erased from the list when the system discovers a query can
now be answered.

A user wishing to submit knowledge that is maximally
useful can then ask the system to give them a high-frequency
unfulfilled request so that they can research what knowledge
is missing from the knowledge base in order to add it. The
system would then give the user “ownership” of that query for
a limited time to stop multiple people competing to add the
same knowledge. Once their ownership ended, the system
will run the query internally to see whether they had suc-
ceeded and either remove it from the list or maintain it for
another user to consider in due course. Further embodiments
of'the system would prioritise the most needed queries to the
most trusted (by track record) users.

In a further embodiment users could attach an amount of
money to an unanswered query to financially incentivise
someone else to add the knowledge. The user that got this
query to add would get a percentage of the money when the
appropriate knowledge was added. Furthermore, such queries
would be offered first to the most trusted users in financial
amount order giving users a financial incentive to build a good
track record: they are then nearer the front of the queue for the
larger payments. Queries where users attach money to get
them answered could be queries that they have typed in and
not got a response or they could be in the form of short
messages describing what knowledge they want added to the
knowledge base.

2.13.4 Usage Agreement

A further method the preferred embodiment uses to
increase the accuracy of the knowledge asserted is to publish
ausage agreement within the system, and to prompt each user
to read and consent to it before using the system. The usage
agreement contains terms that insist that only knowledge that
the user believes to be true should be asserted, and provides
negative consequences if these terms are broken. Warnings
referring to the importance of accuracy and the user agree-
ment are also included in the screens presenting the interac-
tion with the system when the knowledge is asserted by the
user.

2.14 Integrating with a Search Engine (Using
Documents as a Fall-Back)

Some embodiments of the present invention work as part
of, or together with, an internet search engine. FIG. 43 illus-
trates this. The search string entered by the user (step 4302) is
processed as a question (step 4304) and the result (if any) is
stored. The string is then passed on to a search engine (step
4306), possibly after refinement (as illustrated in FIG. 44, and
discussed in more detail in section 2.14.1 below). The results
from both processes (4304 and 4306) are then combined and
displayed (step 4308).

The combination of search-engine and embodiment of the
invention can be achieved in various ways.

In one embodiment, the search-engine is simply an addi-
tional component operable to take a query and produce an
ordered list of documents. This component can be called as a
fall-back when a question is not translated or when the ques-
tion is translated but no responses are produced. i.e. The
output can actually just be one result or the other.

In an alternative embodiment, the invention is imple-
mented as a “plug-in” for a pre-existing search-engine. The
primary system is a standard search-engine but the user query
is additionally passed through this embodiment (possibly
acting remotely). Any response from this embodiment is dis-
played above the search-engine results or instead of the

10

15

20

25

30

35

40

45

50

55

60

65

110

search-engine results. If there is no useful response, the
search-engine results are displayed. In this way the user is no
worse off than they would have been using a standard search-
engine but if their query can be answered using this embodi-
ment, the user benefits from the advantages of a response
based on structured knowledge. FIG. 2 shows an example of
this.

Various embodiments handle the combination and display
of results in various ways. If the results were recognised and
the knowledge base produced useful answers, this output
could be presented either instead of or in addition to the
normal output from the search engine. The display of search
engine results could depend on the user clicking a link. (In
some embodiments step 4306 would be normally bypassed,
and only initiated if the user chose to click on a button or link
to show search engine results.) If all or some of the search
string were recognised as denoting an object in the knowledge
base, one or more profile screens for those objects could form
all or part of the output. In other embodiments links to the
profile screen(s) or knowledge base response could be output.

The functional combination of search-engine and present
invention embodiment can be achieved in a variety of ways:

According to various embodiments, the combination of
requests happens at the server end. The user query is trans-
mitted over the internet to the web server which passes the
request to both the search engine and this embodiment, com-
bines the results and presents the resulting combined results
to the user.

According to other embodiments, the combination hap-
pens at the client end. For example, a toolbar or web browser
extension supplies the user query to both a search engine and
independently to an online embodiment of this invention,
receives the results independently from each system and acts
accordingly. This action could be to display the structured
knowledge results if successful and the search-engine results
if not; to combine the two into a single page or to open two
windows, one for each set of results.

2.14.1 Keyword Refinement

Inother related embodiments the knowledge base is used to
enhance the query prior to processing by the search engine.
This refinement process is illustrated in FIG. 44. The query to
be refined is first collected (step 4402), and then analysed and
converted into a form more suitable for keyword searching
(step 4404). The converted query is then passed to a search
engine (step 4406), and the resulting list of documents
returned (step 4408). For example, when a string is recogn-
ised as denoting an object in the knowledge base, other strings
known to denote this object can be used to form part of the
keyword search, especially when the present system knows
that such alternative strings uniquely denote the object being
searched for (or are used for this object in the majority of
cases). For example, a web search involving the string “Bill
Clinton” could be expanded to also search for pages including
the string “William Jefferson Clinton” or “President Clinton”
and (optionally) to treat the alternatives equally.

A further refinement to this embodiment working in con-
junction with a search engine is some pre-processing of the
query string when the query is in question form, to make it
more likely to locate the information in a web-based docu-
ment—specifically removing possible keywords that are part
of'the grammar of'the question rather than words needed to be
located within the documents searched for. For example, if
the query starts “What is . . . ” and the answer is not located in
the structured knowledge base, the query is going to be used
for keyword searching in the hope that the search engine will
turn up a document that has the answer contained within it in
natural language. As a consequence the word “what” is not a

US 9,098,492 B2

111

keyword that should be searched for and should be extracted
from the query before passing it to the search-engine.

2.15 Remote Computer Interface

A desirable (but optional) feature present in various
embodiments is to allow access by remote computers. As
embodiments are able to produce knowledge in structured
form, services provided, especially query answering, have the
potential to be substantially more useful to a remote auto-
mated system than natural language documents returned by a
search engine which are designed for (and only really useful
for) human eyes.

The preferred embodiment is operable to provide several
services to remote automated systems including:

10

112
The preferred embodiment is operable to receive the
request data via an HTTP (or HTTPS) request where the
request data is encoded using HTTP request variables. The
embodiment responds (again using HTTP) with an XML
document matching a pre-determined XML schema.

2.15.1 Example Remote Computer Interaction

Here is a sample interaction with the preferred embodi-
ment, disclosed to illustrate the principles involved and give a
concrete example of an XML schema suitable for answering
translation and query requests.

2.15.1.1 Translation Request

First the remote computer wants the question “Who are

> President Monroe’s children?” translated. It sends the follow-

ing HTTP request (essentially opening the following URL):

http://www.worldkb.com/remote__service?user==xxx1 &pw=testpassword&service=question&qu
estion=Who-+are+President+Monroe%?27s+children%3F

Query answering. The remote automated system sends a
query over the network and the embodiment processes the
query and sends the results back.

Translation. The remote system sends a natural language
question over the network and a translation into one or more
queries is returned.

By providing a variety of services some components of
various embodiments (such as the knowledge addition com-
ponent) can be located on remote systems on the network and
use the remote computer interface to interact with other com-
ponents.

Computer communication over a network is a very estab-
lished area of technology so a large variety of implementa-
tions will be obvious but an interaction with the remote com-
puter interface will typically involve:

Transmission over the network of request data specifying

the requested service by the client automated system.

Receipt of this request data by the embodiment.

Fulfilment of the service using the request data and gener-

ating return data (e.g. the results from processing the
query).

Transmission by the embodiment of this return data over

the network.

Receipt of the return data by the client automated system.

In many embodiments the request data will include authen-
tication data enabling the embodiment to know the identity of

25

30

35

40

45

The remote system responds with:

<semscript:response
xmlns:semscript="http://www.semscript.com/ns/remote__service”
type="“question”>

<semscript:status>ok</semscript:status>
<semscript:num__results>1</semscript:num__results>

<semscript:result type="“query”>

<semscript:query>

query el[current time] [applies to] nowlf: e [is a child of] [president james
monroe]|f [applies at timepoint] now

</semscript:query>

<semscript:retranslation™>

Determine which objects have the relationship ‘is a child of” to President
James Monroe, the 5th President of the United States at the current time.
</semscript:retranslation™>

</semscript:result>

</semscript:response>

i.e. The query returned is:

query e
[current time] [applies to] now

f: e [is a child of] [president james monroe]
f [applies at timepoint] now

2.15.1.2 Query Response
The remote system then attempts to get an answer for the
query with the following HTTP (or HTTPS) request:

http://www.worldkb.com/remote_service?
user=xxx1&pw=testpassword&service=query&xml=1&query=query+e%0D%0A%5Bcurrent+time%5D
+%5Bapplies+to%SD+now%0D%0A %3 A+e+%5Bis+a+child+of%5D+%5Bpresident+james+monroe%5 D%
0D%0Af+%5Bapplies+at+timepoint%S5D+now&mode=full&explanation=1

the remote automated system and to (optionally) record and
(optionally) seek consideration for the service (for example
charging money).

Other embodiments use an interactive session where a
single interaction is accomplished by more than two interac-
tive transmissions of data. For example, the authentication
step could be done first and once authentication had been
acknowledged the client system could then send the query to
be answered.

60

65

and gets the following response:

<semscript:response
xmlns:semscript="http://www.semscript.com/ns/kengine’
type="“query__execution”>
<semscript:status><complete</semscript:status>
<semscript:num__results>3</semscript:num__results>
<semscript:result>

5

US 9,098,492 B2

113

-continued

<semscript:variable name="¢">

<semscript:id>[eliza kortright monroe]</semscript:id>
<semscript:unique_translation>Eliza Kortright Monroe, daughter of US
President Monroe, 1787-1840</semscript:unique_ translation>
</semscript:variable>

</semscript:result>

<semscript:result>

<semscript:variable name="¢">

<semscript:id>[james spence monroe]</semscript:id>
<semscript:unique_ translation>James Spence Monroe, 1799-1800, son
of US President Monroe</semscript:unique__translation>
</semscript:variable>

</semscript:result>

<semscript:result>

<semscript:variable name="¢”

<semscript:id>[maria hester monroe]</semscript:id>

<semscript:unique_ translation>Maria Hester Monroe, 1803-1850,
daughter of US President James Monroe</semscript:unique__translation>
</semscript:variable>

</semscript:result>

<semscript:explanation type="“short”>

Eliza Monroe is a
child of President James Monroe

‘is a child of” is
permanent

James Monroe is
a child of President James Monroe

Maria Monroe is
a child of President James Monroe

</semscript:explanation>

<semscript:explanation type="“long”>

[..]

</semscript:explanation>

<semscript:num__essential facts>4</semscript:num__ essential facts>
<semscript:essential _fact>

<semscript:fact__id>fact.1147791 @semscript.com</semscript:fact_ id>
<semscript:fact_ translation>FEliza Monroe is a child of President James
Monroe</semscript:fact_translation>

[..]

</semscript:response>

The long explanation and some other data has been
removed for space reasons but the example should illustrate
the principles involved.

2.15.2 Example Applications

The remote computer interface can be used any computer
system wanting access to real world knowledge for any pur-
pose. The number of applications is therefore extremely
large.

However, to give some idea of the possibilities, some ran-
dom example applications are now disclosed which embodi-
ments of the current invention may enable via the remote
computer interface. This is not intended to be a definitive list
but to be illustrative of what can be achieved and to further
expand upon the principles disclosed:

2.15.2.1 Enhanced Email Client #1

In current email clients one must either know the recipi-
ent’s email address when sending an email, either directly or
by having their details in a local address book. Furthermore,
when email addresses change or become obsolete, the records
in the local address book do not update.

Using the remote computer interface to an embodiment of
the present invention containing substantial amounts of
knowledge of people and their addresses, this would no
longer be a problem. The user could simply type the name of
the person or entity that they wish to email into the To: field
and the email client could do a query to determine the correct
email address. For example, for “William MacDonald” typed
into the To: field, the query could be:

15

25

30

35

40

45

50

55

60

65

114

query urs,e
[“William MacDonald”] [can denote] p
p [uniquely translates as] urs

[current time] [applies to] now

f: e [is the main email address of] p

f [applies at timepoint] now

Ambiguity (via unique translation) could also be over-
come. In the above example, the unique recognition strings of
all the people to which “William MacDonald” is a valid
denotational string and who have an email address stored are
returned. The unique recognition string or strings can be used
to confirm the intended recipient or to enable user selection in
the event of ambiguity.

In an alternative embodiment it can be done in two steps,
with all the people listed and the email address retrieved

It could also handle a miniature translation using embodi-
ments where translation is a remote service. For example, the
user could type “The CEO of Ficton Engineering [td” with-
out knowing his name. The email client could then translate
that into a query, do the query and look up their email address.
2.15.2.2 National Holiday Determination

Applications which need to determine whether a particular
date is a national holiday in a particular jurisdiction (e.g.
scheduling systems, diary applications, loan interest calcula-
tion systems) are likely (prior to access to an embodiment of
the current invention) to have this information stored in a
local database or some form of local system requiring quite
complicated coding.

An embodiment with this knowledge supported could
enable all such applications to retrieve this information via
the remote computer interface without any of them needing
any local coding beyond what is needed to support access.

There are a number of ways this knowledge can be repre-
sented in various embodiments. One exemplary method is to
have a class of calendar dates which is a subclass of timepoint
with the accuracy specified to a day/year only and to have a
subclass of calendar dates for national holidays.

An example query could then be:
query
[timepoint: [“2006/5/297]] [is an instance of] [england and

wales bank holiday]

Corresponding to the question “Is the 29th of May 2006 an
English bank holiday?”

Separate classes can be added as more jurisdictions are
added.

Alternatively the classes can use a parametered object with
the administrative area at issue as the parameter, e.g. for
national holidays in the United States the class could be
[national holiday: [united states of america]].
2.15.2.3 Automatic Threading of Emails by Entity

Email clients can only distinguish between different email
addresses. In practice people have several different email
addresses and over years change their address regularly.
Without express knowledge being given to the email client,
the email client has no way of knowing that these different
emails from different from-addresses came from the same
person.

An embodiment keeping track of current and former email
addresses of people and entities can provide this knowledge
to an email client via the remote computer interface enabling
all emails from the same entity to be grouped together regard-
less of the address they were sent from.

An example embodiment could implement this with the
transient relation [is an email address of], left class [email
address], right class [agreement making entity| (a parent class

US 9,098,492 B2

115

of human and organisation). The query need not specify any
temporal constraints as the query is asking for all current and
former email addresses of a person.

2.15.2.4 Polling for Events of Interest

By periodically doing a query an automated system can
keep a user up-to-date with news about entities of interest.

For example, a program could periodically do a query to
test and to discover the marital status, life/death status, chil-
dren and employment status of friends, family members and
acquaintances of the person wanting this service. This test
could be done daily (e.g. with a cron job) and changes
reported to the user (e.g. by email).

Such a service would automatically keep a person up-to-
date with events of great personal (but not national) interest
which might otherwise only be communicated late or not at
all and certainly would not be communicated using the con-
ventional media.

An automated system could use a similar technique to do
certain actions once an event had taken place. For example, by
using automated periodic polling of a query, it would be
possible to arrange to send an email after one’s own death—
perhaps sending information to loved ones that one wanted
suppressed during one’s lifetime.
2.15.2.5 Enhanced Word Processor Features

Embodiments of the current invention can contain a sub-
stantial amount of natural language data linking natural lan-
guage to real-world entities and additionally providing much
useful knowledge about those entities.

By using the remote computer interface a word processing
application could intelligently identify what was being
described and offer additional services tailored to what is
being typed. For example, when a person’s name was being
typed, an option to insert an identifying photograph of that
person into the document could become available. When a
geographic area was mentioned, maps and driving directions
could be offered.

While the invention has been particularly shown and
described with reference to specific embodiments thereof, it
will be understood by those skilled in the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the inven-
tion. In addition, although various advantages, aspects, and
objects of the present invention have been discussed herein
with reference to various embodiments, it will be understood
that the scope of the invention should not be limited by ref-
erence to such advantages, aspects, and objects. Rather, the
scope of the invention should be determined with reference to
the appended claims.

What is claimed is:

1. A computer-implemented method, comprising:

providing an interface to a knowledge base, the knowledge

base including a plurality of objects corresponding to
nodes of a graph, and a plurality of relationships
between pairs of the objects, the plurality of relation-
ships corresponding to edges of the graph;

receiving first information regarding a first new relation-

ship from a first user via the interface in response to the
first user interacting with a first user interface object, the
first information asserting the first new relationship
between a first pair of the objects, the first user being one
of a plurality of untrained, general internet users of the
knowledge base;

immediately publishing the first new relationship to the

knowledge base in response to receipt of the first infor-
mation thereby making the first new relationship avail-
able to others of the untrained, general internet users of
the knowledge base;

20

25

30

35

40

45

50

55

116

receiving a natural language question from a second user

via the interface;

generating a query corresponding to the natural language

question for use with the knowledge base;

processing the query with reference to the objects and the

relationships of the knowledge base and the first new
relationship to generate one or more results responsive
to the natural language question;

generating a response from the one or more results;

transmitting the response for presentation to the second

user;

receiving second information regarding a second new rela-

tionship from a third user via the interface, the second
information asserting the second new relationship
between a second pair of the objects, the third user being
one ofthe plurality of untrained, general internet users of
the knowledge base; and

deferring publication of the second new relationship to the

knowledge base until the second new relationship is
endorsed by at least one other user of the knowledge
base.

2. The method of claim 1, further comprising adding a new
object to the knowledge base in response to input from a
fourth user.

3. The method of claim 1, wherein the response includes
profile information describing an object corresponding to the
one or more results.

4. The method of claim 1, wherein a first subset of the
objects included in the knowledge base corresponds to physi-
cal entities in the real world, and a second subset of the objects
included in the knowledge base corresponds to conceptual
entities, and wherein the objects correspond to a plurality of
object classes.

5. The method of claim 1, wherein the plurality of relation-
ships correspond to a plurality of relationship types, and
wherein a subset of the objects included in the knowledge
base correspond to a plurality of users.

6. The method of claim 1, wherein the knowledge base
further includes a time period object associated with at least
one relationship.

7. The method of claim 1, wherein the first new relationship
comprises one of “is,” “is married to,” “is an instance of.”
“applies to,” “is a member of,” “is a subclass of,” “is a direct
subclass of,” “is a distinct class from,” “is a url of,” “is the
president of.” “is the capital of,” “is the birthplace of,” “is
geographically located within,” “applies for time period,”
“applies at time point,” “is the father of,” “is the mother of.”
“is a parent of,” “is the child of,” “commonly translates as,”
“uniquely translates as,” “equals,” “can denote,” “is a present
central form of;” “is an attribute form of,” ““is the left class of,”
“is the right class of,” “is the age of,” “is living in,” ““is an email
address of,” or “is responsible for content at.”

8. A computing system for answering questions relating to
a graph, comprising:

one or more data stores having a knowledge base stored

therein, the knowledge base including a plurality of
objects corresponding to nodes of the graph, and a plu-
rality of relationships between pairs of the objects, the
plurality of relationships corresponding to edges of the
graph; and

one or more computing devices configured to:

provide an interface to the knowledge base;

receive first information regarding a first new relationship

from a first user via the interface in response to the first
user interacting with a first user interface object, the first
information asserting the first new relationship between

29 <

US 9,098,492 B2

117

a first pair of the objects, the first user being one of a
plurality of untrained, general internet users of the
knowledge base;

immediately publish the first new relationship to the

knowledge base in response to receipt of the first infor-
mation thereby making the first new relationship avail-
able to others of the untrained, general internet users of
the knowledge base;

receive a natural language question from a second user via

the interface;

generate a query corresponding to the natural language

question for use with the knowledge base;

process the query with reference to the objects and the

relationships of the knowledge base and the first new
relationship to generate one or more results responsive
to the natural language question;

generate a response from the one or more results;

transmit the response for presentation to the second user;

receive second information regarding a second new rela-
tionship from a third user via the interface, the second
information asserting the second new relationship
between a second pair of the objects, the third user being
one of the plurality of untrained, general internet users of
the knowledge base; and

defer publication of the second new relationship to the

knowledge base until the second new relationship is
endorsed by at least one other user of the knowledge
base.

9. The computing system of claim 8, wherein the one or
more computing devices are further configured to add a new
object to the knowledge base in response to input from a
fourth user.

10. The computing system of claim 8, wherein the response
includes profile information describing an object correspond-
ing to the one or more results.

11. The computing system of claim 8, wherein a first subset
of'the objects included in the knowledge base corresponds to
physical entities in the real world, and a second subset of the
objects included in the knowledge base corresponds to con-
ceptual entities, and wherein the objects correspond to a
plurality of object classes.

12. The computing system of claim 8, wherein the plurality
of relationships correspond to a plurality of relationship
types, and wherein a subset of the objects included in the
knowledge base correspond to a plurality of users.

13. The computing system of claim 8, wherein the knowl-
edge base further includes a time period object associated
with at least one relationship.

14. The computing system of claim 8, wherein the first new

2 < 2 <

relationship comprises one of “is,” “is married to,” “is an

29 ¢c

instance of,” “applies to,” “is amember of,” “is a subclass of,”
“is a direct subclass of,” ““is a distinct class from,” ““is a url of,”
“is the president of,” ““is the capital of,” ““is the birthplace of,”
“is geographically located within,” “applies for time period,”
“applies at time point,” “is the father of,” “is the mother of.”
“is a parent of,” “is the child of)” “commonly translates as,”
“uniquely translates as,” “equals,” “can denote,” “is a present
central form of” ““is an attribute form of,” ““is the left class of,”
“is the right class of,” ““is the age of,” “is living in,” ““is an email
address of,” or “is responsible for content at.”

15. A computer program product for answering questions
relating to a graph, comprising one or more non-transitory
computer-readable media having computer program instruc-
tions stored therein, the computer program instructions being
configured such that, when executed, the computer program

instructions cause one or more computing devices to:

10

25

35

40

45

55

118

provide an interface to a knowledge base, the knowledge
base including a plurality of objects corresponding to
nodes of the graph, and a plurality of relationships
between pairs of the objects, the relationships corre-
sponding to edges of the graph;

receive first information regarding a first new relationship

from a first user via the interface in response to the first
user interacting with a first user interface object, the first
information asserting the first new relationship between
a first pair of the objects, the first user being one of a
plurality of untrained, general internet users of the
knowledge base;

immediately publish the first new relationship to the

knowledge base in response to receipt of the first infor-
mation thereby making the first new relationship avail-
able to others of the untrained, general internet users of
the knowledge base;

receive a natural language question from a second user via

the interface;

generate a query corresponding to the natural language

question for use with the knowledge base;

process the query with reference to the objects and the

relationships of the knowledge base and the first new
relationship to generate one or more results responsive
to the natural language question;

generate a response from the one or more results;

transmit the response for presentation to the second user;

receive second information regarding a second new rela-
tionship from a third user via the interface, the second
information asserting the second new relationship
between a second pair of the objects, the third user being
one ofthe plurality of untrained, general internet users of
the knowledge base; and

defer publication of the second new relationship to the

knowledge base until the second new relationship is
endorsed by at least one other user of the knowledge
base.

16. The computer program product of claim 15, wherein
the computer program instructions are further configured
such that, when executed, the computer program instructions
cause the one or more computing devices to add a new object
to the knowledge base in response to input from a fourth user.

17. The computer program product of claim 15, wherein
the response includes profile information describing an object
corresponding to the one or more results.

18. The computer program product of claim 15, wherein a
first subset of the objects included in the knowledge base
corresponds to physical entities in the real world, and a sec-
ond subset of the objects included in the knowledge base
corresponds to conceptual entities, and wherein the objects
correspond to a plurality of object classes.

19. The computer program product of claim 15, wherein
the plurality of relationships correspond to a plurality of
relationship types, and wherein a subset of the objects
included in the knowledge base correspond to a plurality of
users.

20. The computer program product of claim 15, wherein
the knowledge base further includes a time period object
associated with at least one relationship.

21. The computer program product of claim 15, wherein
the first new relationship comprises one of “is,” “is married
to,” “is an instance of,” “applies to,” “is a member of}” “is a
subclass of,” “is a direct subclass of]” “is a distinct class
from,” “is a url of,” “is the president of,” “is the capital of,” “is
the birthplace of” “is geographically located within,”
“applies for time period,” “applies at time point,” “is the
father of,” “is the mother of,” ““is a parent of,” “is the child of.”

US 9,098,492 B2
119 120

“commonly translates as,” “uniquely translates as,” “equals,”

“can denote,” “is a present central form of;” “is an attribute

form of,” ““is the left class of,” ““is the right class of,” ““is the age
R

of}” “is living in,” “is an email address of,” or “is responsible
for content at.” 5

29

